spacer
spacer

PDBsum entry 1i9z

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1i9z

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
336 a.a. *
Ligands
2IP
Metals
_CA
Waters ×224
* Residue conservation analysis
PDB id:
1i9z
Name: Hydrolase
Title: Crystal structure of inositol polyphosphate 5-phosphatase domain (ipp5c) of spsynaptojanin in complex with inositol (1,4)-bisphosphate and calcium ion
Structure: Phosphatidylinositol phosphate phosphatase. Chain: a. Fragment: ipp5c domain, residues 534-880. Synonym: synaptojanin. Engineered: yes
Source: Schizosaccharomyces pombe. Fission yeast. Organism_taxid: 4896. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.80Å     R-factor:   0.191     R-free:   0.218
Authors: Y.Tsujishita,S.Guo,L.Stolz,J.D.York,J.H.Hurley
Key ref:
Y.Tsujishita et al. (2001). Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell, 105, 379-389. PubMed id: 11348594 DOI: 10.1016/S0092-8674(01)00326-9
Date:
21-Mar-01     Release date:   16-May-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
O43001  (SYJ1_SCHPO) -  Inositol-1,4,5-trisphosphate 5-phosphatase 1 from Schizosaccharomyces pombe (strain 972 / ATCC 24843)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1076 a.a.
336 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.1.3.36  - phosphoinositide 5-phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
1-Phosphatidyl-myo-inositol Metabolism
      Reaction: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + H2O = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + phosphate
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate)
+ H2O
= 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate)
+ phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1016/S0092-8674(01)00326-9 Cell 105:379-389 (2001)
PubMed id: 11348594  
 
 
Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase.
Y.Tsujishita, S.Guo, L.E.Stolz, J.D.York, J.H.Hurley.
 
  ABSTRACT  
 
Inositol polyphosphate 5-phosphatases are central to intracellular processes ranging from membrane trafficking to Ca(2+) signaling, and defects in this activity result in the human disease Lowe syndrome. The 1.8 resolution structure of the inositol polyphosphate 5-phosphatase domain of SPsynaptojanin bound to Ca(2+) and inositol (1,4)-bisphosphate reveals a fold and an active site His and Asp pair resembling those of several Mg(2+)-dependent nucleases. Additional loops mediate specific inositol polyphosphate contacts. The 4-phosphate of inositol (1,4)-bisphosphate is misoriented by 4.6 compared to the reactive geometry observed in the apurinic/apyrimidinic endonuclease 1, explaining the dephosphorylation site selectivity of the 5-phosphatases. Based on the structure, a series of mutants are described that exhibit altered substrate specificity providing general determinants for substrate recognition.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Domain Structures of Representa- tive 5-Phosphatases
Figure 7.
Figure 7. Membrane Docking of SPsynapto- janin-IPP5C
 
  The above figures are reprinted by permission from Cell Press: Cell (2001, 105, 379-389) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21031565 H.Hichri, J.Rendu, N.Monnier, C.Coutton, O.Dorseuil, R.V.Poussou, G.Baujat, A.Blanchard, F.Nobili, B.Ranchin, M.Remesy, R.Salomon, V.Satre, and J.Lunardi (2011).
From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes.
  Hum Mutat, 32, 379-388.  
21378754 X.Hou, N.Hagemann, S.Schoebel, W.Blankenfeldt, R.S.Goody, K.S.Erdmann, and A.Itzen (2011).
A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1.
  EMBO J, 30, 1659-1670.
PDB code: 3qbt
20724587 C.A.Broberg, L.Zhang, H.Gonzalez, M.A.Laskowski-Arce, and K.Orth (2010).
A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity.
  Science, 329, 1660-1662.  
19470488 A.Fujita, J.Cheng, K.Tauchi-Sato, T.Takenawa, and T.Fujimoto (2009).
A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique.
  Proc Natl Acad Sci U S A, 106, 9256-9261.  
19765184 E.L.Clayton, and M.A.Cousin (2009).
The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles.
  J Neurochem, 111, 901-914.  
19508852 P.Mayinger (2009).
Regulation of Golgi function via phosphoinositide lipids.
  Semin Cell Dev Biol, 20, 793-800.  
19668216 S.L.Bielas, J.L.Silhavy, F.Brancati, M.V.Kisseleva, L.Al-Gazali, L.Sztriha, R.A.Bayoumi, M.S.Zaki, A.Abdel-Aleem, R.O.Rosti, H.Kayserili, D.Swistun, L.C.Scott, E.Bertini, E.Boltshauser, E.Fazzi, L.Travaglini, S.J.Field, S.Gayral, M.Jacoby, S.Schurmans, B.Dallapiccola, P.W.Majerus, E.M.Valente, and J.G.Gleeson (2009).
Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies.
  Nat Genet, 41, 1032-1036.  
19536138 Y.Mao, D.M.Balkin, R.Zoncu, K.S.Erdmann, L.Tomasini, F.Hu, M.M.Jin, M.E.Hodsdon, and P.De Camilli (2009).
A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism.
  EMBO J, 28, 1831-1842.
PDB codes: 2kie 2kig
18094048 E.Marza, T.Long, A.Saiardi, M.Sumakovic, S.Eimer, D.H.Hall, and G.M.Lesa (2008).
Polyunsaturated Fatty Acids Influence Synaptojanin Localization to Regulate Synaptic Vesicle Recycling.
  Mol Biol Cell, 19, 833-842.  
17605038 D.Blero, B.Payrastre, S.Schurmans, and C.Erneux (2007).
Phosphoinositide phosphatases in a network of signalling reactions.
  Pflugers Arch, 455, 31-44.  
17343681 H.M.Loovers, A.Kortholt, H.de Groote, L.Whitty, R.L.Nussbaum, and P.J.van Haastert (2007).
Regulation of phagocytosis in Dictyostelium by the inositol 5-phosphatase OCRL homolog Dd5P4.
  Traffic, 8, 618-628.  
17682126 K.A.Horan, K.Watanabe, A.M.Kong, C.G.Bailey, J.E.Rasko, T.Sasaki, and C.A.Mitchell (2007).
Regulation of FcgammaR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3 mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup.
  Blood, 110, 4480-4491.  
17765681 K.S.Erdmann, Y.Mao, H.J.McCrea, R.Zoncu, S.Lee, S.Paradise, J.Modregger, D.Biemesderfer, D.Toomre, and P.De Camilli (2007).
A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway.
  Dev Cell, 13, 377-390.
PDB code: 2qv2
18093523 M.Mani, S.Y.Lee, L.Lucast, O.Cremona, G.Di Paolo, P.De Camilli, and T.A.Ryan (2007).
The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals.
  Neuron, 56, 1004-1018.  
16880518 A.M.Kong, K.A.Horan, A.Sriratana, C.G.Bailey, L.J.Collyer, H.H.Nandurkar, A.Shisheva, M.J.Layton, J.E.Rasko, T.Rowe, and C.A.Mitchell (2006).
Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane.
  Mol Cell Biol, 26, 6065-6081.  
16990515 B.C.Suh, T.Inoue, T.Meyer, and B.Hille (2006).
Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels.
  Science, 314, 1454-1457.  
16582877 D.F.Lazar, and A.R.Saltiel (2006).
Lipid phosphatases as drug discovery targets for type 2 diabetes.
  Nat Rev Drug Discov, 5, 333-342.  
16595670 H.Ago, M.Oda, M.Takahashi, H.Tsuge, S.Ochi, N.Katunuma, M.Miyano, and J.Sakurai (2006).
Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus.
  J Biol Chem, 281, 16157-16167.
PDB codes: 2ddr 2dds 2ddt
16780580 I.S.Mian, E.A.Worthey, and R.Salavati (2006).
Taking U out, with two nucleases?
  BMC Bioinformatics, 7, 305.  
16964627 S.J.Mills, H.Dozol, F.Vandeput, K.Backers, T.Woodman, C.Erneux, B.Spiess, and B.V.Potter (2006).
3-hydroxybenzene 1,2,4-trisphosphate, a novel second messenger mimic and unusual substrate for type-I myo-inositol 1,4,5-trisphosphate 5-phosphatase: Synthesis and physicochemistry.
  Chembiochem, 7, 1696-1706.  
16712421 T.Rowe, C.Hale, A.Zhou, R.J.Kurzeja, A.Ali, A.Menjares, M.Wang, and J.D.McCarter (2006).
A high-throughput microfluidic assay for SH2 domain-containing inositol 5-phosphatase 2.
  Assay Drug Dev Technol, 4, 175-183.  
16093240 A.E.Openshaw, P.R.Race, H.J.Monzó, J.A.Vázquez-Boland, and M.J.Banfield (2005).
Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria.
  J Biol Chem, 280, 35011-35017.
PDB code: 1zwx
15735664 A.Koch, A.Mancini, O.El Bounkari, and T.Tamura (2005).
The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading.
  Oncogene, 24, 3436-3447.  
15637157 A.Weichsel, E.M.Maes, J.F.Andersen, J.G.Valenzuela, T.K.h.Shokhireva, F.A.Walker, and W.R.Montfort (2005).
Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein.
  Proc Natl Acad Sci U S A, 102, 594-599.
PDB codes: 1ntf 1y21
16101675 M.Lowe (2005).
Structure and function of the Lowe syndrome protein OCRL1.
  Traffic, 6, 711-719.  
16052242 M.R.Wenk (2005).
The emerging field of lipidomics.
  Nat Rev Drug Discov, 4, 594-610.  
15755742 U.Gioia, P.Laneve, M.Dlakic, M.Arceci, I.Bozzoni, and E.Caffarelli (2005).
Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis.
  J Biol Chem, 280, 18996-19002.  
15274918 O.Weichenrieder, K.Repanas, and A.Perrakis (2004).
Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon.
  Structure, 12, 975-986.
PDB code: 1vyb
15316017 Y.Chi, B.Zhou, W.Q.Wang, S.K.Chung, Y.U.Kwon, Y.H.Ahn, Y.T.Chang, Y.Tsujishita, J.H.Hurley, and Z.Y.Zhang (2004).
Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe Synaptojanin and SHIP2.
  J Biol Chem, 279, 44987-44995.  
14579326 C.Venclovas (2003).
Comparative modeling in CASP5: progress is evident, but alignment errors remain a significant hindrance.
  Proteins, 53, 380-388.  
12464622 H.M.Loovers, K.Veenstra, H.Snippe, X.Pesesse, C.Erneux, and P.J.van Haastert (2003).
A diverse family of inositol 5-phosphatases playing a role in growth and development in Dictyostelium discoideum.
  J Biol Chem, 278, 5652-5658.  
12536145 R.Gurung, A.Tan, L.M.Ooms, M.J.McGrath, R.D.Huysmans, A.D.Munday, M.Prescott, J.C.Whisstock, and C.A.Mitchell (2003).
Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation.
  J Biol Chem, 278, 11376-11385.  
11854411 C.J.Stefan, A.Audhya, and S.D.Emr (2002).
The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate.
  Mol Biol Cell, 13, 542-557.  
11796224 J.H.Hurley, D.E.Anderson, B.Beach, B.Canagarajah, Y.S.Ho, E.Jones, G.Miller, S.Misra, M.Pearson, L.Saidi, S.Suer, R.Trievel, and Y.Tsujishita (2002).
Structural genomics and signaling domains.
  Trends Biochem Sci, 27, 48-53.  
11884229 M.E.March, and K.Ravichandran (2002).
Regulation of the immune response by SHIP.
  Semin Immunol, 14, 37-47.  
11988466 S.McLaughlin, J.Wang, A.Gambhir, and D.Murray (2002).
PIP(2) and proteins: interactions, organization, and information flow.
  Annu Rev Biophys Biomol Struct, 31, 151-175.  
11517225 D.Communi, K.Gevaert, H.Demol, J.Vandekerckhove, and C.Erneux (2001).
A novel receptor-mediated regulation mechanism of type I inositol polyphosphate 5-phosphatase by calcium/calmodulin-dependent protein kinase II phosphorylation.
  J Biol Chem, 276, 38738-38747.  
11739414 J.M.Dyson, C.J.O'Malley, J.Becanovic, A.D.Munday, M.C.Berndt, I.D.Coghill, H.H.Nandurkar, L.M.Ooms, and C.A.Mitchell (2001).
The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin.
  J Cell Biol, 155, 1065-1079.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer