6iv6 Citations

An anti-CRISPR protein disables type V Cas12a by acetylation.

Nat Struct Mol Biol 26 308-314 (2019)
Cited: 52 times
EuropePMC logo PMID: 30936526

Abstract

Phages use anti-CRISPR proteins to deactivate the CRISPR-Cas system. The mechanisms for the inhibition of type I and type II systems by anti-CRISPRs have been elucidated. However, it has remained unknown how the type V CRISPR-Cas12a (Cpf1) system is inhibited by anti-CRISPRs. Here we identify the anti-CRISPR protein AcrVA5 and report the mechanisms by which it inhibits CRISPR-Cas12a. Our structural and biochemical data show that AcrVA5 functions as an acetyltransferase to modify Moraxella bovoculi (Mb) Cas12a at Lys635, a residue that is required for recognition of the protospacer-adjacent motif. The AcrVA5-mediated modification of MbCas12a results in complete loss of double-stranded DNA (dsDNA)-cleavage activity. In contrast, the Lys635Arg mutation renders MbCas12a completely insensitive to inhibition by AcrVA5. A cryo-EM structure of the AcrVA5-acetylated MbCas12a reveals that Lys635 acetylation provides sufficient steric hindrance to prevent dsDNA substrates from binding to the Cas protein. Our study reveals an unprecedented mechanism of CRISPR-Cas inhibition and suggests an evolutionary arms race between phages and bacteria.

Reviews - 6iv6 mentioned but not cited (1)

  1. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Annu Rev Microbiol 74 21-37 (2020)


Reviews citing this publication (21)

  1. The arms race between bacteria and their phage foes. Hampton HG, Watson BNJ, Fineran PC. Nature 577 327-336 (2020)
  2. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Nat Methods 17 471-479 (2020)
  3. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Annu Rev Biochem 89 309-332 (2020)
  4. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Signal Transduct Target Ther 5 1 (2020)
  5. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Lammens EM, Nikel PI, Lavigne R. Nat Commun 11 5294 (2020)
  6. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors. Li Y, Bondy-Denomy J. Cell Host Microbe 29 704-714 (2021)
  7. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  8. In Silico Approaches for Prediction of Anti-CRISPR Proteins. Makarova KS, Wolf YI, Koonin EV. J Mol Biol 435 168036 (2023)
  9. Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins. Yang L, Zhang Y, Yin P, Feng Y. RNA Biol 18 562-573 (2021)
  10. Anti-CRISPR Discovery: Using Magnets to Find Needles in Haystacks. Forsberg KJ. J Mol Biol 435 167952 (2023)
  11. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Zhang F, Song G, Tian Y. Animal Model Exp Med 2 69-75 (2019)
  12. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Signal Transduct Target Ther 5 1 (2020)
  13. Bacteriophage strategies for overcoming host antiviral immunity. Gao Z, Feng Y. Front Microbiol 14 1211793 (2023)
  14. Controlling and enhancing CRISPR systems. Shivram H, Cress BF, Knott GJ, Doudna JA. Nat Chem Biol 17 10-19 (2021)
  15. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  16. Mechanisms regulating the CRISPR-Cas systems. Zakrzewska M, Burmistrz M. Front Microbiol 14 1060337 (2023)
  17. Small nucleic acids and the path to the clinic for anti-CRISPR. Barkau CL, O'Reilly D, Eddington SB, Damha MJ, Gagnon KT. Biochem Pharmacol 189 114492 (2021)
  18. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)
  19. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Shim H. Antibiotics (Basel) 12 204 (2023)
  20. Type II anti-CRISPR proteins as a new tool for synthetic biology. Zhang Y, Marchisio MA. RNA Biol 18 1085-1098 (2021)
  21. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Yu L, Marchisio MA. Front Bioeng Biotechnol 8 575393 (2020)

Articles citing this publication (30)

  1. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Athukoralage JS, McMahon SA, Zhang C, Grüschow S, Graham S, Krupovic M, Whitaker RJ, Gloster TM, White MF. Nature 577 572-575 (2020)
  2. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription. Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ, Bondy-Denomy J, Davidson AR. Cell 178 1452-1464.e13 (2019)
  3. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Nat Microbiol 5 620-629 (2020)
  4. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G, Huang C, Wei Y, Gao GF, Jiang J, Wu M. Mol Cell 78 850-861.e5 (2020)
  5. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM. Zhang K, Wang S, Li S, Zhu Y, Pintilie GD, Mou TC, Schmid MF, Huang Z, Chiu W. Proc Natl Acad Sci U S A 117 7176-7182 (2020)
  6. Machine learning predicts new anti-CRISPR proteins. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas FUAA. Nucleic Acids Res 48 4698-4708 (2020)
  7. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. Proc Natl Acad Sci U S A 117 6531-6539 (2020)
  8. The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Ceyssens PJ, De Smet J, Wagemans J, Akulenko N, Klimuk E, Hedge S, Voet M, Hendrix H, Paeshuyse J, Landuyt B, Xu H, Blanchard J, Severinov K, Lavigne R. Viruses 12 E976 (2020)
  9. Enzymatic anti-CRISPRs improve the bacteriophage arsenal. Suresh SK, Murugan K, Sashital DG. Nat Struct Mol Biol 26 250-251 (2019)
  10. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Gussow AB, Park AE, Borges AL, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV. Nat Commun 11 3784 (2020)
  11. Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Jacobsen T, Ttofali F, Liao C, Manchalu S, Gray BN, Beisel CL. Nucleic Acids Res 48 5624-5638 (2020)
  12. Structural basis of Staphylococcus aureus Cas9 inhibition by AcrIIA14. Liu H, Zhu Y, Lu Z, Huang Z. Nucleic Acids Res 49 6587-6595 (2021)
  13. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Peng R, Li Z, Xu Y, He S, Peng Q, Wu LA, Wu Y, Qi J, Wang P, Shi Y, Gao GF. Proc Natl Acad Sci U S A 116 18928-18936 (2019)
  14. A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. Wang X, Dong K, Kong D, Zhou Y, Yin J, Cai F, Wang M, Ye H. Sci Adv 7 eabh2358 (2021)
  15. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Dmytrenko O, Neumann GC, Hallmark T, Keiser DJ, Crowley VM, Vialetto E, Mougiakos I, Wandera KG, Domgaard H, Weber J, Gaudin T, Metcalf J, Gray BN, Begemann MB, Jackson RN, Beisel CL. Nature 613 588-594 (2023)
  16. Decoupling the bridge helix of Cas12a results in a reduced trimming activity, increased mismatch sensitivity and impaired conformational transitions. Wörle E, Jakob L, Schmidbauer A, Zinner G, Grohmann D. Nucleic Acids Res 49 5278-5293 (2021)
  17. Insights into the dual functions of AcrIF14 during the inhibition of type I-F CRISPR-Cas surveillance complex. Liu X, Zhang L, Xiu Y, Gao T, Huang L, Xie Y, Yang L, Wang W, Wang P, Zhang Y, Yang M, Feng Y. Nucleic Acids Res 49 10178-10191 (2021)
  18. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. FEMS Microbiol. Lett. 366 (2019)
  19. AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation. Sun W, Cheng Z, Wang J, Yang J, Li X, Wang J, Chen M, Yang X, Sheng G, Lou J, Wang Y. Proc Natl Acad Sci U S A 120 e2303675120 (2023)
  20. Acylation driven by intracellular metabolites in host cells inhibits Cas9 activity used for genome editing. Zhao L, You D, Wang T, Zou ZP, Yin BC, Zhou Y, Ye BC. PNAS Nexus 1 pgac277 (2022)
  21. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides. Cui YR, Wang SJ, Chen J, Li J, Chen W, Wang S, Meng B, Zhu W, Zhang Z, Yang B, Jiang B, Yang G, Ma P, Liu J. Genome Biol 21 51 (2020)
  22. Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing. Garcia B, Lee J, Edraki A, Hidalgo-Reyes Y, Erwood S, Mir A, Trost CN, Seroussi U, Stanley SY, Cohn RD, Claycomb JM, Sontheimer EJ, Maxwell KL, Davidson AR. Cell Rep 29 1739-1746.e5 (2019)
  23. Anti-CRISPR proteins function through thermodynamic tuning and allosteric regulation of CRISPR RNA-guided surveillance complex. Patterson A, White A, Waymire E, Fleck S, Golden S, Wilkinson RA, Wiedenheft B, Bothner B. Nucleic Acids Res 50 11243-11254 (2022)
  24. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Bernheim A, Bikard D, Touchon M, Rocha EPC. Nucleic Acids Res 48 748-760 (2020)
  25. Efficient Multiplex Genome Editing in Streptomyces via Engineered CRISPR-Cas12a Systems. Zhang J, Zhang D, Zhu J, Liu H, Liang S, Luo Y. Front Bioeng Biotechnol 8 726 (2020)
  26. Rethinking Protein Drug Design with Highly Accurate Structure Prediction of Anti-CRISPR Proteins. Park HM, Park Y, Vankerschaver J, Van Messem A, De Neve W, Shim H. Pharmaceuticals (Basel) 15 310 (2022)
  27. Letter Reversible regulation of Cas12a activities by AcrVA5-mediated acetylation and CobB-mediated deacetylation. Kang X, Yin L, Zhuang S, Hu T, Wu Z, Zhao G, Chen Y, Xu Y, Wang J. Cell Discov 8 45 (2022)
  28. Search for Origins of Anti-CRISPR Proteins by Structure Comparison. Sahakyan H, Makarova KS, Koonin EV. CRISPR J 6 222-231 (2023)
  29. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M, Arkin AP, Fellmann C, Doudna JA. Elife 8 (2019)
  30. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Gabel C, Li Z, Zhang H, Chang L. Nucleic Acids Res 49 584-594 (2021)