6ism Citations

A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vγ9Vδ2 T Cell Activation.

Abstract

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.

Reviews citing this publication (26)

  1. Cancer immunotherapy with γδ T cells: many paths ahead of us. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cell Mol Immunol 17 925-939 (2020)
  2. γδ T Cell Update: Adaptate Orchestrators of Immune Surveillance. Hayday AC. J Immunol 203 311-320 (2019)
  3. γδ T cells in cancer: a small population of lymphocytes with big implications. Raverdeau M, Cunningham SP, Harmon C, Lynch L. Clin Transl Immunology 8 e01080 (2019)
  4. An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Herrmann T, Fichtner AS, Karunakaran MM. Cells 9 E1433 (2020)
  5. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Li Y, Li G, Zhang J, Wu X, Chen X. Front Immunol 11 619954 (2020)
  6. Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Zhang C, Hu Y, Xiao W, Tian Z. Cell Mol Immunol 18 2083-2100 (2021)
  7. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Perez C, Gruber I, Arber C. Front Immunol 11 583716 (2020)
  8. The Role of Human γδ T Cells in Anti-Tumor Immunity and Their Potential for Cancer Immunotherapy. Liu Y, Zhang C. Cells 9 E1206 (2020)
  9. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Bank I. Cells 9 E462 (2020)
  10. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Lee HW, Chung YS, Kim TJ. Immune Netw 20 e5 (2020)
  11. γδ T-cell responses during HIV infection and antiretroviral therapy. Juno JA, Eriksson EM. Clin Transl Immunology 8 e01069 (2019)
  12. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Chabab G, Barjon C, Bonnefoy N, Lafont V. Front Immunol 11 2186 (2020)
  13. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Chan KF, Duarte JDG, Ostrouska S, Behren A. Front Immunol 13 894315 (2022)
  14. Structure-Activity Relationships of Butyrophilin 3 Ligands. Wiemer AJ. ChemMedChem 15 1030-1039 (2020)
  15. The emerging roles of γδ T cells in cancer immunotherapy. Mensurado S, Blanco-Domínguez R, Silva-Santos B. Nat Rev Clin Oncol 20 178-191 (2023)
  16. Our evolving understanding of the role of the γδ T cell receptor in γδ T cell mediated immunity. Gully BS, Rossjohn J, Davey MS. Biochem Soc Trans 49 1985-1995 (2021)
  17. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Mann BT, Sambrano E, Maggirwar SB, Soriano-Sarabia N. Front Cell Infect Microbiol 10 221 (2020)
  18. Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. de Araújo ND, Gama FM, de Souza Barros M, Ribeiro TLP, Alves FS, Xabregas LA, Tarragô AM, Malheiro A, Costa AG. J Immunol Res 2021 6633824 (2021)
  19. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Mol Cancer 22 31 (2023)
  20. BTN3A: A Promising Immune Checkpoint for Cancer Prognosis and Treatment. Kone AS, Ait Ssi S, Sahraoui S, Badou A. Int J Mol Sci 23 13424 (2022)
  21. Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Cells 11 3572 (2022)
  22. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Liu Y, Han Y, Zeng S, Shen H. Cell Biosci 11 48 (2021)
  23. Recent advances in understanding the development and function of γδ T cells. Contreras AV, Wiest DL. F1000Res 9 F1000 Faculty Rev-306 (2020)
  24. Butyrophilins: Dynamic Regulators of Protective T Cell Immunity in Cancer. Kumari R, Hosseini ES, Warrington KE, Milonas T, Payne KK. Int J Mol Sci 24 8722 (2023)
  25. The capability of heterogeneous γδ T cells in cancer treatment. Yan W, Dunmall LSC, Lemoine NR, Wang Y, Wang Y, Wang P. Front Immunol 14 1285801 (2023)
  26. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. Signal Transduct Target Ther 8 434 (2023)

Articles citing this publication (35)

  1. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, Yang J, Hu Y, Chen Y, Lin L, Hao J, Li J, Chen J, Li M, Wu Q, Peters C, Zhou Q, Li J, Liang Y, Wang X, Han B, Ma M, Kabelitz D, Xu K, Tu W, Wu Y, Yin Z. Cell Mol Immunol 18 427-439 (2021)
  2. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Payne KK, Mine JA, Biswas S, Chaurio RA, Perales-Puchalt A, Anadon CM, Costich TL, Harro CM, Walrath J, Ming Q, Tcyganov E, Buras AL, Rigolizzo KE, Mandal G, Lajoie J, Ophir M, Tchou J, Marchion D, Luca VC, Bobrowicz P, McLaughlin B, Eskiocak U, Schmidt M, Cubillos-Ruiz JR, Rodriguez PC, Gabrilovich DI, Conejo-Garcia JR. Science 369 942-949 (2020)
  3. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδ T cell compartments. Jandke A, Melandri D, Monin L, Ushakov DS, Laing AG, Vantourout P, East P, Nitta T, Narita T, Takayanagi H, Feederle R, Hayday A. Nat Commun 11 3769 (2020)
  4. γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Junqueira C, Polidoro RB, Castro G, Absalon S, Liang Z, Sen Santara S, Crespo Â, Pereira DB, Gazzinelli RT, Dvorin JD, Lieberman J. Nat Immunol 22 347-357 (2021)
  5. Bibliometrics Analysis of Butyrophilins as Immune Regulators [1992-2019] and Implications for Cancer Prognosis. Wang Y, Zhao N, Zhang X, Li Z, Liang Z, Yang J, Liu X, Wu Y, Chen K, Gao Y, Yin Z, Lin X, Zhou H, Tian D, Cao Y, Hao J. Front Immunol 11 1187 (2020)
  6. Alpaca (Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Fichtner AS, Karunakaran MM, Gu S, Boughter CT, Borowska MT, Starick L, Nöhren A, Göbel TW, Adams EJ, Herrmann T. Proc Natl Acad Sci U S A 117 6697-6707 (2020)
  7. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. Front Immunol 11 573920 (2020)
  8. Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Laplagne C, Ligat L, Foote J, Lopez F, Fournié JJ, Laurent C, Valitutti S, Poupot M. Cell Mol Immunol 18 1861-1870 (2021)
  9. Comprehensive analysis of BTN3A1 in cancers: mining of omics data and validation in patient samples and cellular models. Liang F, Zhang C, Guo H, Gao SH, Yang FY, Zhou GB, Wang GZ. FEBS Open Bio 11 2586-2599 (2021)
  10. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Hsiao CC, Nguyen K, Jin Y, Vinogradova O, Wiemer AJ. Cell Chem Biol 29 985-995.e5 (2022)
  11. Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints. Girard P, Ponsard B, Charles J, Chaperot L, Aspord C. Front Immunol 11 861 (2020)
  12. Comparison of a Novel Bisphosphonate Prodrug and Zoledronic Acid in the Induction of Cytotoxicity in Human Vγ2Vδ2 T Cells. Okuno D, Sugiura Y, Sakamoto N, Tagod MSO, Iwasaki M, Noda S, Tamura A, Senju H, Umeyama Y, Yamaguchi H, Suematsu M, Morita CT, Tanaka Y, Mukae H. Front Immunol 11 1405 (2020)
  13. Probing the Ligand-Binding Pocket of BTN3A1. Poe MM, Agabiti SS, Liu C, Li V, Teske KA, Hsiao CC, Wiemer AJ. J Med Chem 62 6814-6823 (2019)
  14. Synthesis and Bioactivity of the Alanyl Phosphonamidate Stereoisomers Derived from a Butyrophilin Ligand. Lentini NA, Hsiao CC, Crull GB, Wiemer AJ, Wiemer DF. ACS Med Chem Lett 10 1284-1289 (2019)
  15. Untargeted metabolomics approach to discriminate mistletoe commercial products. Vanhaverbeke C, Touboul D, Elie N, Prévost M, Meunier C, Michelland S, Cunin V, Ma L, Vermijlen D, Delporte C, Pochet S, Le Gouellec A, Sève M, Van Antwerpen P, Souard F. Sci Rep 11 14205 (2021)
  16. BTN3A Targeting Vγ9Vδ2 T Cells Antimicrobial Activity Against Coxiella burnetii-Infected Cells. Gay L, Mezouar S, Cano C, Foucher E, Gabriac M, Fullana M, Madakamutil L, Mège JL, Olive D. Front Immunol 13 915244 (2022)
  17. Clonal enrichments of Vδ2- γδ T cells in Mycobacterium tuberculosis-infected human lungs. Kulicke CA, Lewinsohn DA, Lewinsohn DM. J Clin Invest 130 68-70 (2020)
  18. Potent double prodrug forms of synthetic phosphoantigens. Harmon NM, Huang X, Schladetsch MA, Hsiao CC, Wiemer AJ, Wiemer DF. Bioorg Med Chem 28 115666 (2020)
  19. Up-regulation of BTN3A1 on CD14+ cells promotes Vγ9Vδ2 T cell activation in psoriasis. Zhou J, Zhang J, Tao L, Peng K, Zhang Q, Yan K, Luan J, Pan J, Su X, Sun J, Zhang Z, Shen L. Proc Natl Acad Sci U S A 119 e2117523119 (2022)
  20. Listeria monocytogenes-infected human monocytic derived dendritic cells activate Vγ9Vδ2 T cells independently of HMBPP production. Alice AF, Kramer G, Bambina S, Bahjat KS, Gough MJ, Crittenden MR. Sci Rep 11 16347 (2021)
  21. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. Lentini NA, Schroeder CM, Harmon NM, Huang X, Schladetsch MA, Foust BJ, Poe MM, Hsiao CC, Wiemer AJ, Wiemer DF. ACS Med Chem Lett 12 136-142 (2021)
  22. A luciferase lysis assay reveals in vivo malignant cell sensitization by phosphoantigen prodrugs. Li J, Lentini NA, Wiemer DF, Wiemer AJ. Biochem Pharmacol 170 113668 (2019)
  23. Age-related changes in PD-1 expression coincide with increased cytotoxic potential in Vδ2 T cells during infancy. Hsu H, Boudova S, Mvula G, Divala TH, Rach D, Mungwira RG, Boldrin F, Degiacomi G, Manganelli R, Laufer MK, Cairo C. Cell Immunol 359 104244 (2021)
  24. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Diene Modifications to the Phosphoantigen Scaffold. Harmon NM, Poe MM, Huang X, Singh R, Foust BJ, Hsiao CC, Wiemer DF, Wiemer AJ. ACS Med Chem Lett 13 164-170 (2022)
  25. Phosphoantigen-Stimulated γδ T Cells Suppress Natural Killer-Cell Responses to Missing-Self. Walwyn-Brown K, Pugh J, Cocker ATH, Beyzaie N, Singer BB, Olive D, Guethlein LA, Parham P, Djaoud Z. Cancer Immunol Res 10 558-570 (2022)
  26. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Biol Open 11 bio059049 (2022)
  27. γ9δ2 T-Cell Expansion and Phenotypic Profile Are Reflected in the CDR3δ Repertoire of Healthy Adults. Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z, Kuball J. Front Immunol 13 915366 (2022)
  28. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Nat Commun 14 7617 (2023)
  29. B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma. Wang Y, Ji N, Zhang Y, Chu J, Pan C, Zhang P, Ma W, Zhang X, Xi JJ, Chen M, Zhang Y, Zhang L, Sun T. J Transl Med 21 672 (2023)
  30. Mutations to the BTN2A1 Linker Region Impact Its Homodimerization and Its Cytoplasmic Interaction with Phospho-Antigen-Bound BTN3A1. Nguyen K, Jin Y, Howell M, Hsiao CC, Wiemer AJ, Vinogradova O. J Immunol 211 23-33 (2023)
  31. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Nature 621 840-848 (2023)
  32. Reducing farnesyl diphosphate synthase levels activates Vγ9Vδ2 T cells and improves tumor suppression in murine xenograft cancer models. Liou ML, Lahusen T, Li H, Xiao L, Pauza CD. Front Immunol 13 1012051 (2022)
  33. Search for MHC/TCR-Like Systems in Living Organisms. Paganini J, Pontarotti P. Front Immunol 12 635521 (2021)
  34. Synergistic effects of BTN3A1, SHP2, CD274, and STAT3 gene polymorphisms on the risk of systemic lupus erythematosus: a multifactorial dimensional reduction analysis. Tang YY, Xu WD, Fu L, Liu XY, Huang AF. Clin Rheumatol (2023)
  35. Systematic pattern analyses of Vδ2+ TCRs reveal that shared "public" Vδ2+ γδ T cell clones are a consequence of rearrangement bias and a higher expansion status. Deng L, Harms A, Ravens S, Prinz I, Tan L. Front Immunol 13 960920 (2022)