6b8e Citations

An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.

Abstract

Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here, we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function.

Articles - 6b8e mentioned but not cited (2)

  1. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  2. research-article Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Woods VA, Abzalimov RR, Keedy DA. bioRxiv 2023.07.12.548582 (2023)


Reviews citing this publication (9)

  1. Advances in covalent drug discovery. Boike L, Henning NJ, Nomura DK. Nat Rev Drug Discov 21 881-898 (2022)
  2. Fragment-based covalent ligand discovery. Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. RSC Chem Biol 2 354-367 (2021)
  3. Harnessing Conformational Plasticity to Generate Designer Enzymes. Crean RM, Gardner JM, Kamerlin SCL. J Am Chem Soc 142 11324-11342 (2020)
  4. High throughput and quantitative enzymology in the genomic era. Mokhtari DA, Appel MJ, Fordyce PM, Herschlag D. Curr Opin Struct Biol 71 259-273 (2021)
  5. Discovery of allosteric binding sites by crystallographic fragment screening. Krojer T, Fraser JS, von Delft F. Curr Opin Struct Biol 65 209-216 (2020)
  6. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 F1000 Faculty Rev-667 (2020)
  7. Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics. Hekstra DR. Annu Rev Biophys 52 255-274 (2023)
  8. Recent applications of computational methods to allosteric drug discovery. Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Front Mol Biosci 9 1070328 (2022)
  9. What is allosteric regulation? Exploring the exceptions that prove the rule! McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. J Biol Chem 300 105672 (2024)

Articles citing this publication (51)

  1. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, QCRG Structural Biology Consortium, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Sci Adv 7 eabf8711 (2021)
  2. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E, Longwell SA, Sabatti C, Herschlag D, Fordyce PM. Science 373 eabf8761 (2021)
  3. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Pádua RAP, Sun Y, Marko I, Pitsawong W, Stiller JB, Otten R, Kern D. Nat Commun 9 4507 (2018)
  4. Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. Ebrahim A, Moreno-Chicano T, Appleby MV, Chaplin AK, Beale JH, Sherrell DA, Duyvesteyn HME, Owada S, Tono K, Sugimoto H, Strange RW, Worrall JAR, Axford D, Owen RL, Hough MA. IUCrJ 6 543-551 (2019)
  5. A defined structural unit enables de novo design of small-molecule-binding proteins. Polizzi NF, DeGrado WF. Science 369 1227-1233 (2020)
  6. Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B. Cui DS, Lipchock JM, Brookner D, Loria JP. J Am Chem Soc 141 12634-12647 (2019)
  7. Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases. Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. J Am Chem Soc 143 3830-3845 (2021)
  8. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro). Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. IUCrJ 9 682-694 (2022)
  9. qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps. Riley BT, Wankowicz SA, de Oliveira SHP, van Zundert GCP, Hogan DW, Fraser JS, Keedy DA, van den Bedem H. Protein Sci 30 270-285 (2021)
  10. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature. Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. Sci Adv 8 eabo5083 (2022)
  11. Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation. Macpherson JA, Theisen A, Masino L, Fets L, Driscoll PC, Encheva V, Snijders AP, Martin SR, Kleinjung J, Barran PE, Fraternali F, Anastasiou D. Elife 8 e45068 (2019)
  12. Mutations Utilize Dynamic Allostery to Confer Resistance in TEM-1 β-lactamase. Modi T, Ozkan SB. Int J Mol Sci 19 E3808 (2018)
  13. Temperature artifacts in protein structures bias ligand-binding predictions. Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Chem Sci 12 11275-11293 (2021)
  14. Ensemble-function relationships to dissect mechanisms of enzyme catalysis. Yabukarski F, Doukov T, Pinney MM, Biel JT, Fraser JS, Herschlag D. Sci Adv 8 eabn7738 (2022)
  15. Pre-clustering data sets using cluster4x improves the signal-to-noise ratio of high-throughput crystallography drug-screening analysis. Ginn HM. Acta Crystallogr D Struct Biol 76 1134-1144 (2020)
  16. Conserved conformational dynamics determine enzyme activity. Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Sci Adv 8 eabo5546 (2022)
  17. Instrumentation and experimental procedures for robust collection of X-ray diffraction data from protein crystals across physiological temperatures. Doukov T, Herschlag D, Yabukarski F. J Appl Crystallogr 53 1493-1501 (2020)
  18. Cooperative dynamics across distinct structural elements regulate PTP1B activity. Torgeson KR, Clarkson MW, Kumar GS, Page R, Peti W. J Biol Chem 295 13829-13837 (2020)
  19. Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography. Wolff AM, Nango E, Young ID, Brewster AS, Kubo M, Nomura T, Sugahara M, Owada S, Barad BA, Ito K, Bhowmick A, Carbajo S, Hino T, Holton JM, Im D, O'Riordan LJ, Tanaka T, Tanaka R, Sierra RG, Yumoto F, Tono K, Iwata S, Sauter NK, Fraser JS, Thompson MC. Nat Chem 15 1549-1558 (2023)
  20. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. J Biol Chem 295 4923-4936 (2020)
  21. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Elife 12 e84632 (2023)
  22. Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases. Shen R, Crean RM, Olsen KJ, Corbella M, Calixto AR, Richan T, Brandão TAS, Berry RD, Tolman A, Loria JP, Johnson SJ, Kamerlin SCL, Hengge AC. Chem Sci 13 13524-13540 (2022)
  23. Native SAD phasing at room temperature. Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Acta Crystallogr D Struct Biol 78 986-996 (2022)
  24. Probing ligand binding of endothiapepsin by `temperature-resolved' macromolecular crystallography. Huang CY, Aumonier S, Engilberge S, Eris D, Smith KML, Leonarski F, Wojdyla JA, Beale JH, Buntschu D, Pauluhn A, Sharpe ME, Metz A, Olieric V, Wang M. Acta Crystallogr D Struct Biol 78 964-974 (2022)
  25. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Acta Crystallogr D Struct Biol 78 945-963 (2022)
  26. Single Residue on the WPD-Loop Affects the pH Dependency of Catalysis in Protein Tyrosine Phosphatases. Shen R, Crean RM, Johnson SJ, Kamerlin SCL, Hengge AC. JACS Au 1 646-659 (2021)
  27. A Computer-Driven Scaffold-Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2-a]quinoxaline Core. García-Marín J, Griera M, Alajarín R, Rodríguez-Puyol M, Rodríguez-Puyol D, Vaquero JJ. ChemMedChem 16 2895-2906 (2021)
  28. Modulating Enzyme Function via Dynamic Allostery within Biliverdin Reductase B. Redzic JS, Duff MR, Blue A, Pitts TM, Agarwal P, Eisenmesser EZ. Front Mol Biosci 8 691208 (2021)
  29. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Sharma S, Ebrahim A, Keedy DA. Acta Crystallogr F Struct Biol Commun 79 23-30 (2023)
  30. Computational Analysis of Energy Landscapes Reveals Dynamic Features That Contribute to Binding of Inhibitors to CFTR-Associated Ligand. Holt GT, Jou JD, Gill NP, Lowegard AU, Martin JW, Madden DR, Donald BR. J Phys Chem B 123 10441-10455 (2019)
  31. Letter Discovery and Validation of the Binding Poses of Allosteric Fragment Hits to Protein Tyrosine Phosphatase 1b: From Molecular Dynamics Simulations to X-ray Crystallography. Greisman JB, Willmore L, Yeh CY, Giordanetto F, Shahamadtar S, Nisonoff H, Maragakis P, Shaw DE. J Chem Inf Model 63 2644-2650 (2023)
  32. Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches. Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Molecules 27 5241 (2022)
  33. Allosteric Inhibition of PTP1B by a Nonpolar Terpenoid. Friedman AJ, Liechty ET, Kramer L, Sarkar A, Fox JM, Shirts MR. J Phys Chem B 126 8427-8438 (2022)
  34. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Thorne RE. Acta Crystallogr D Struct Biol 79 78-94 (2023)
  35. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. IUCrJ 9 610-624 (2022)
  36. Protein-to-structure pipeline for ambient-temperature in situ crystallography at VMXi. Mikolajek H, Sanchez-Weatherby J, Sandy J, Gildea RJ, Campeotto I, Cheruvara H, Clarke JD, Foster T, Fujii S, Paulsen IT, Shah BS, Hough MA. IUCrJ 10 420-429 (2023)
  37. Solvent flows, conformation changes and lattice reordering in a cold protein crystal. Moreau DW, Atakisi H, Thorne RE. Acta Crystallogr D Struct Biol 75 980-994 (2019)
  38. A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis. Yeh CY, Izaguirre JA, Greisman JB, Willmore L, Maragakis P, Shaw DE. J Chem Inf Model 63 4115-4124 (2023)
  39. High-resolution double vision of the allosteric phosphatase PTP1B. Sharma S, Skaist Mehlman T, Sagabala RS, Boivin B, Keedy DA. Acta Crystallogr F Struct Biol Commun 80 1-12 (2024)
  40. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Hough MA, Prischi F, Worrall JAR. Front Mol Biosci 10 1113762 (2023)
  41. Perturbative diffraction methods resolve a conformational switch that facilitates a two-step enzymatic mechanism. Greisman JB, Dalton KM, Brookner DE, Klureza MA, Sheehan CJ, Kim IS, Henning RW, Russi S, Hekstra DR. Proc Natl Acad Sci U S A 121 e2313192121 (2024)
  42. Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP. Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Commun Biol 7 59 (2024)
  43. Congress Reporting on the future of integrative structural biology ORAU workshop. Hamilton GL, Alper J, Sanabria H. Front Biosci (Landmark Ed) 25 43-68 (2020)
  44. Activation and friction in enzymatic loop opening and closing dynamics. Zinovjev K, Guénon P, Ramos-Guzmán CA, Ruiz-Pernía JJ, Laage D, Tuñón I. Nat Commun 15 2490 (2024)
  45. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. J Phys Chem B 127 8305-8316 (2023)
  46. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Hardie A, Cossins BP, Lovera S, Michel J. Commun Chem 6 125 (2023)
  47. Introduction to the virtual thematic issue on room-temperature biological crystallography. Steiner RA. IUCrJ 10 248-250 (2023)
  48. Introduction to the virtual thematic issue on room-temperature biological crystallography. Steiner RA. Acta Crystallogr F Struct Biol Commun 79 79-81 (2023)
  49. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  50. Sequence - dynamics - function relationships in protein tyrosine phosphatases. Crean RM, Corbella M, Calixto AR, Hengge AC, Kamerlin SCL. QRB Discov 5 e4 (2024)
  51. The Antidiabetic Activities of Neocryptotanshinone: Screened by Molecular Docking and Related to the Modulation of PTP1B. Hao J, Qian Z, Liu Z, Zhang G, Wang D, Han W. Nutrients 14 3031 (2022)