5y5n Citations

Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, "selectivity pocket" and NAD+-binding site.

Abstract

Sirtuin 2 (SIRT2), a member of the NAD+-dependent histone deacetylase family, has recently received increasing attention due to its potential involvement in neurodegenerative diseases and the progression of cancer. Potent and selective SIRT2 inhibitors thus represent desirable biological probes. Based on the X-ray crystal structure of SIRT2 in complex with a previously reported weak inhibitor (

Reviews - 5y5n mentioned but not cited (2)

  1. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Manjula R, Anuja K, Alcain FJ. Front Pharmacol 11 585821 (2020)
  2. Recent advances in the development of histone deacylase SIRT2 inhibitors. Yang W, Chen W, Su H, Li R, Song C, Wang Z, Yang L. RSC Adv 10 37382-37390 (2020)

Articles - 5y5n mentioned but not cited (2)

  1. Crystallographic and SAR analyses reveal the high requirements needed to selectively and potently inhibit SIRT2 deacetylase and decanoylase. Yang LL, Xu W, Yan J, Su HL, Yuan C, Li C, Zhang X, Yu ZJ, Yan YH, Yu Y, Chen Q, Wang Z, Li L, Qian S, Li GB. Medchemcomm 10 164-168 (2019)
  2. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Int J Mol Sci 24 9363 (2023)


Reviews citing this publication (7)

  1. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Itoh Y. Chem Rec 18 1681-1700 (2018)
  2. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Hong JY, Lin H. Front Pharmacol 12 735044 (2021)
  3. Sirtuin modulators: past, present, and future perspectives. Fiorentino F, Mautone N, Menna M, D'Acunzo F, Mai A, Rotili D. Future Med Chem 14 915-939 (2022)
  4. Recent advances in inhibitors of sirtuin1/2: an update and perspective. Zhou Z, Ma T, Zhu Q, Xu Y, Zha X. Future Med Chem 10 907-934 (2018)
  5. Opening the Selectivity Pocket in the Human Lysine Deacetylase Sirtuin2 - New Opportunities, New Questions. Robaa D, Monaldi D, Wössner N, Kudo N, Rumpf T, Schiedel M, Yoshida M, Jung M. Chem Rec 18 1701-1707 (2018)
  6. Drug Design Concepts for LSD1-Selective Inhibitors. Ota Y, Suzuki T. Chem Rec 18 1782-1791 (2018)
  7. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Komaniecki G, Lin H. Front Cell Dev Biol 9 717503 (2021)

Articles citing this publication (12)

  1. Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activity-Dependent Inhibition, and On-Target Anticancer Activities. Spiegelman NA, Price IR, Jing H, Wang M, Yang M, Cao J, Hong JY, Zhang X, Aramsangtienchai P, Sadhukhan S, Lin H. ChemMedChem 13 1890-1894 (2018)
  2. A Small-Molecule SIRT2 Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation. Spiegelman NA, Hong JY, Hu J, Jing H, Wang M, Price IR, Cao J, Yang M, Zhang X, Lin H. ChemMedChem 14 744-748 (2019)
  3. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2. Kudo N, Ito A, Arata M, Nakata A, Yoshida M. Philos Trans R Soc Lond B Biol Sci 373 20170070 (2018)
  4. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, Saikot FK, Adams SE, Mosaiab T, Masic V, Mao X, Rose F, Vasquez E, Furrer M, Cunnea K, Brearley A, Gu W, Luo Z, Brillault L, Landsberg MJ, DiAntonio A, Kobe B, Milbrandt J, Hughes RO, Ve T. Mol Cell 82 1643-1659.e10 (2022)
  5. A Glycoconjugated SIRT2 Inhibitor with Aqueous Solubility Allows Structure-Based Design of SIRT2 Inhibitors. Hong JY, Price IR, Bai JJ, Lin H. ACS Chem Biol 14 1802-1810 (2019)
  6. HaloTag-Targeted Sirtuin-Rearranging Ligand (SirReal) for the Development of Proteolysis-Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)*. Schiedel M, Lehotzky A, Szunyogh S, Oláh J, Hammelmann S, Wössner N, Robaa D, Einsle O, Sippl W, Ovádi J, Jung M. Chembiochem 21 3371-3376 (2020)
  7. Mechanism-based inhibitors of SIRT2: structure-activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. Nielsen AL, Rajabi N, Kudo N, Lundø K, Moreno-Yruela C, Bæk M, Fontenas M, Lucidi A, Madsen AS, Yoshida M, Olsen CA. RSC Chem Biol 2 612-626 (2021)
  8. Design, Synthesis, and Biological Evaluation of 8-Mercapto-3,7-Dihydro-1H-Purine-2,6-Diones as Potent Inhibitors of SIRT1, SIRT2, SIRT3, and SIRT5. Han H, Li C, Li M, Yang L, Zhao S, Wang Z, Liu H, Liu D. Molecules 25 E2755 (2020)
  9. QSAR studies on the human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. Ferreira GM, Magalhães JG, Maltarollo VG, Kronenberger T, Ganesan A, Emery FDS, Trossini GHG. J Biomol Struct Dyn 38 354-363 (2020)
  10. Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. Schiedel M, Daub H, Itzen A, Jung M. Chembiochem 21 1161-1166 (2020)
  11. 5-((3-Amidobenzyl)oxy)nicotinamides as SIRT2 Inhibitors: A Study of Constrained Analogs. Ai T, Wilson DJ, Chen L. Molecules 28 7655 (2023)
  12. Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds. Singh V, Mujwar S, Singh M, Singh T, Ahmad SF. Molecules 28 7005 (2023)