5h9p Citations

Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors.

Sci Rep 6 29457 (2016)
Related entries: 4y24, 5h9q, 5h9r, 5h9s

Cited: 42 times
EuropePMC logo PMID: 27416897

Abstract

Human galectins are promising targets for cancer immunotherapeutic and fibrotic disease-related drugs. We report herein the binding interactions of three thio-digalactosides (TDGs) including TDG itself, TD139 (3,3'-deoxy-3,3'-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside, recently approved for the treatment of idiopathic pulmonary fibrosis), and TAZTDG (3-deoxy-3-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside) with human galectins-1, -3 and -7 as assessed by X-ray crystallography, isothermal titration calorimetry and NMR spectroscopy. Five binding subsites (A-E) make up the carbohydrate-recognition domains of these galectins. We identified novel interactions between an arginine within subsite E of the galectins and an arene group in the ligands. In addition to the interactions contributed by the galactosyl sugar residues bound at subsites C and D, the fluorophenyl group of TAZTDG preferentially bound to subsite B in galectin-3, whereas the same group favored binding at subsite E in galectins-1 and -7. The characterised dual binding modes demonstrate how binding potency, reported as decreased Kd values of the TDG inhibitors from μM to nM, is improved and also offer insights to development of selective inhibitors for individual galectins.

Reviews - 5h9p mentioned but not cited (4)

  1. The Structural Biology of Galectin-Ligand Recognition: Current Advances in Modeling Tools, Protein Engineering, and Inhibitor Design. Modenutti CP, Capurro JIB, Di Lella S, Martí MA. Front Chem 7 823 (2019)
  2. Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Chan YC, Lin HY, Tu Z, Kuo YH, Hsu SD, Lin CH. Int J Mol Sci 19 E392 (2018)
  3. Targeting Galectins With Glycomimetics. Bertuzzi S, Quintana JI, Ardá A, Gimeno A, Jiménez-Barbero J. Front Chem 8 593 (2020)
  4. Glycomimetics for the inhibition and modulation of lectins. Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Chem Soc Rev 52 3663-3740 (2023)

Articles - 5h9p mentioned but not cited (5)

  1. Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Hsieh TJ, Lin HY, Tu Z, Lin TC, Wu SC, Tseng YY, Liu FT, Hsu ST, Lin CH. Sci Rep 6 29457 (2016)
  2. Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N Inhibitor. Di Gaetano S, Pirone L, Galdadas I, Traboni S, Iadonisi A, Pedone E, Saviano M, Gervasio FL, Capasso D. Int J Mol Sci 23 2581 (2022)
  3. Computational Study of Potential Galectin-3 Inhibitors in the Treatment of COVID-19. Aminpour M, Cannariato M, Zucco A, Di Gregorio E, Israel S, Perioli A, Tucci D, Rossi F, Pionato S, Marino S, Deriu MA, Velpula KK, Tuszynski JA. Biomedicines 9 1208 (2021)
  4. Design and synthesis of novel 3-triazolyl-1-thiogalactosides as galectin-1, -3 and -8 inhibitors. van Klaveren S, Dernovšek J, Jakopin Ž, Anderluh M, Leffler H, Nilsson UJ, Tomašič T. RSC Adv 12 18973-18984 (2022)
  5. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. J Appl Crystallogr 54 1034-1046 (2021)


Reviews citing this publication (8)

  1. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Int J Mol Sci 19 E379 (2018)
  2. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Theranostics 8 593-609 (2018)
  3. Galectin-3 Is a Potential Mediator for Atherosclerosis. Gao Z, Liu Z, Wang R, Zheng Y, Li H, Yang L. J Immunol Res 2020 5284728 (2020)
  4. Glycans in drug discovery. Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Medchemcomm 10 1678-1691 (2019)
  5. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA. Nat Rev Drug Discov 22 295-316 (2023)
  6. Functions and Inhibition of Galectin-7, an Emerging Target in Cellular Pathophysiology. Sewgobind NV, Albers S, Pieters RJ. Biomolecules 11 1720 (2021)
  7. The Diagnostic and Therapeutic Potential of Galectin-3 in Cardiovascular Diseases. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. Biomolecules 12 46 (2021)
  8. Inhibition of galectins in cancer: Biological challenges for their clinical application. Laderach DJ, Compagno D. Front Immunol 13 1104625 (2022)

Articles citing this publication (25)

  1. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington's disease. Siew JJ, Chen HM, Chen HY, Chen HL, Chen CM, Soong BW, Wu YR, Chang CP, Chan YC, Lin CH, Liu FT, Chern Y. Nat Commun 10 3473 (2019)
  2. Extracellular and intracellular small-molecule galectin-3 inhibitors. Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, Schambye H, Nilsson UJ, Oredsson S, Leffler H. Sci Rep 9 2186 (2019)
  3. Cell Intrinsic Galectin-3 Attenuates Neutrophil ROS-Dependent Killing of Candida by Modulating CR3 Downstream Syk Activation. Wu SY, Huang JH, Chen WY, Chan YC, Lin CH, Chen YC, Liu FT, Wu-Hsieh BA. Front Immunol 8 48 (2017)
  4. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Bumba L, Laaf D, Spiwok V, Elling L, Křen V, Bojarová P. Int J Mol Sci 19 E372 (2018)
  5. Biophysical and structural characterization of mono/di-arylated lactosamine derivatives interaction with human galectin-3. Atmanene C, Ronin C, Téletchéa S, Gautier FM, Djedaïni-Pilard F, Ciesielski F, Vivat V, Grandjean C. Biochem Biophys Res Commun 489 281-286 (2017)
  6. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'. Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. J Biomol NMR 73 333-346 (2019)
  7. More Is Always Better Than One: The N-Terminal Domain of the Spike Protein as Another Emerging Target for Hampering the SARS-CoV-2 Attachment to Host Cells. Di Gaetano S, Capasso D, Delre P, Pirone L, Saviano M, Pedone E, Mangiatordi GF. Int J Mol Sci 22 6462 (2021)
  8. Targeting galectin-3 with a high-affinity antibody for inhibition of high-grade serous ovarian cancer and other MUC16/CA-125-expressing malignancies. Stasenko M, Smith E, Yeku O, Park KJ, Laster I, Lee K, Walderich S, Spriggs E, Rueda B, Weigelt B, Zamarin D, Rao TD, Spriggs DR. Sci Rep 11 3718 (2021)
  9. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. Vilen Z, Joeh E, Critcher M, Parker CG, Huang ML. ACS Chem Biol 16 1994-2003 (2021)
  10. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange. Chien CH, Ho MR, Lin CH, Hsu SD. Molecules 22 E1357 (2017)
  11. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Lee JJ, Hsu YC, Li YS, Cheng SP. Int J Endocrinol 2021 5583491 (2021)
  12. Lactulose as a novel template for anticancer drug development targeting galectins. Kishor C, Ross RL, Blanchard H. Chem Biol Drug Des 92 1801-1808 (2018)
  13. Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor. Dion J, Advedissian T, Storozhylova N, Dahbi S, Lambert A, Deshayes F, Viguier M, Tellier C, Poirier F, Téletchéa S, Dussouy C, Tateno H, Hirabayashi J, Grandjean C. Chembiochem 18 2428-2440 (2017)
  14. Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies. Sethi A, Sanam S, Munagalasetty S, Jayanthi S, Alvala M. RSC Adv 10 29873-29884 (2020)
  15. Purification of Recombinant Galectins from Different Species Using Distinct Affinity Chromatography Methods. Paul A, Wu SC, Patel KR, Ho AD, Allen JWL, Verkerke H, Arthur CM, Stowell SR. Methods Mol Biol 2442 55-74 (2022)
  16. Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter. Kraus J, Gupta R, Lu M, Gronenborn AM, Akke M, Polenova T. Chemphyschem 21 1436-1443 (2020)
  17. Aromatic heterocycle galectin-1 interactions for selective single-digit nM affinity ligands. Peterson K, Collins PM, Huang X, Kahl-Knutsson B, Essén S, Zetterberg FR, Oredsson S, Leffler H, Blanchard H, Nilsson UJ. RSC Adv 8 24913-24922 (2018)
  18. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. Kraus J, Gupta R, Yehl J, Lu M, Case DA, Gronenborn AM, Akke M, Polenova T. J Phys Chem B 122 2931-2939 (2018)
  19. Multivalent Lactose-Ferrocene Conjugates Based on Poly (Amido Amine) Dendrimers and Gold Nanoparticles as Electrochemical Probes for Sensing Galectin-3. Martos-Maldonado MC, Quesada-Soriano I, García-Fuentes L, Vargas-Berenguel A. Nanomaterials (Basel) 10 E203 (2020)
  20. Exploring the Structural Space of the Galectin-1-Ligand Interaction. Bertleff-Zieschang N, Bechold J, Grimm C, Reutlinger M, Schneider P, Schneider G, Seibel J. Chembiochem 18 1477-1481 (2017)
  21. Synthesis of branched and linear 1,4-linked galactan oligosaccharides. Andersen MCF, Boos I, Kinnaert C, Awan SI, Pedersen HL, Kračun SK, Lanz G, Rydahl MG, Kjærulff L, Håkansson M, Kimbung R, Logan DT, Gotfredsen CH, Willats WGT, Clausen MH. Org Biomol Chem 16 1157-1162 (2018)
  22. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Ortega-Ferreira C, Soret P, Robin G, Speca S, Hubert S, Le Gall M, Desvaux E, Jendoubi M, Saint-Paul J, Chadli L, Chomel A, Berger S, Nony E, Neau B, Fould B, Licznar A, Levasseur F, Guerrier T, Elouej S, Courtade-Gaïani S, Provost N, Nguyen TQ, Verdier J, Launay D, De Ceuninck F. Nat Commun 14 5291 (2023)
  23. Exploring the Molecular Interactions of Symmetrical and Unsymmetrical Selenoglycosides with Human Galectin-1 and Galectin-3. Pirone L, Nieto-Fabregat F, Di Gaetano S, Capasso D, Russo R, Traboni S, Molinaro A, Iadonisi A, Saviano M, Marchetti R, Silipo A, Pedone E. Int J Mol Sci 23 8273 (2022)
  24. Investigation of the Molecular Details of the Interactions of Selenoglycosides and Human Galectin-3. Raics M, Balogh ÁK, Kishor C, Timári I, Medrano FJ, Romero A, Go RM, Blanchard H, Szilágyi L, E Kövér K, Fehér K. Int J Mol Sci 23 2494 (2022)
  25. Targeting disordered-structured domain interactions in Galectin-3 based on NMR and enhanced MD. Bhattacharya S, Zhang M, Hu W, Qi T, Heisterkamp N. Biophys J 121 4342-4357 (2022)