5es7 Citations

Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.

Nature 529 239-42 (2016)
Related entries: 5es5, 5es6, 5es8, 5es9

Cited: 79 times
EuropePMC logo PMID: 26762462

Abstract

Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.

Reviews - 5es7 mentioned but not cited (1)

Articles - 5es7 mentioned but not cited (1)

  1. PvdF of pyoverdin biosynthesis is a structurally unique N10-formyltetrahydrofolate-dependent formyltransferase. Kenjić N, Hoag MR, Moraski GC, Caperelli CA, Moran GR, Lamb AL. Arch Biochem Biophys 664 40-50 (2019)


Reviews citing this publication (21)

  1. Nonribosomal Peptide Synthesis-Principles and Prospects. Süssmuth RD, Mainz A. Angew Chem Int Ed Engl 56 3770-3821 (2017)
  2. Building membrane nanopores. Howorka S. Nat Nanotechnol 12 619-630 (2017)
  3. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Izoré T, Cryle MJ. Nat Prod Rep 35 1120-1139 (2018)
  4. X-ray Scattering Studies of Protein Structural Dynamics. Meisburger SP, Thomas WC, Watkins MB, Ando N. Chem Rev 117 7615-7672 (2017)
  5. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Miyanaga A, Kudo F, Eguchi T. Nat Prod Rep 35 1185-1209 (2018)
  6. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Brown AS, Calcott MJ, Owen JG, Ackerley DF. Nat Prod Rep 35 1210-1228 (2018)
  7. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis. Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. Angew Chem Int Ed Engl 55 9834-9840 (2016)
  8. Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Ronnebaum TA, Lamb AL. Curr Opin Struct Biol 53 1-11 (2018)
  9. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Gulick AM. Nat Prod Rep 34 981-1009 (2017)
  10. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Gulick AM. Curr Opin Chem Biol 35 89-96 (2016)
  11. Refining and expanding nonribosomal peptide synthetase function and mechanism. McErlean M, Overbay J, Van Lanen S. J Ind Microbiol Biotechnol 46 493-513 (2019)
  12. Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. Kudo F, Miyanaga A, Eguchi T. J Ind Microbiol Biotechnol 46 515-536 (2019)
  13. Reductionist Approach in Peptide-Based Nanotechnology. Gazit E. Annu Rev Biochem 87 533-553 (2018)
  14. Adenylation Domains in Nonribosomal Peptide Engineering. Stanišić A, Kries H. Chembiochem 20 1347-1356 (2019)
  15. Synthetic Biology of Natural Products. Breitling R, Takano E. Cold Spring Harb Perspect Biol 8 a023994 (2016)
  16. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Alonzo DA, Schmeing TM. Protein Sci 29 2316-2347 (2020)
  17. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Corpuz JC, Sanlley JO, Burkart MD. Synth Syst Biotechnol 7 677-688 (2022)
  18. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Iacovelli R, Bovenberg RAL, Driessen AJM. J Ind Microbiol Biotechnol 48 kuab045 (2021)
  19. Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Boecker S, Zobel S, Meyer V, Süssmuth RD. Fungal Genet Biol 89 89-101 (2016)
  20. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Bonhomme S, Dessen A, Macheboeuf P. Open Biol 11 200386 (2021)
  21. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Molecules 28 927 (2023)

Articles citing this publication (56)

  1. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. Miller BR, Drake EJ, Shi C, Aldrich CC, Gulick AM. J Biol Chem 291 22559-22571 (2016)
  2. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Tarry MJ, Haque AS, Bui KH, Schmeing TM. Structure 25 783-793.e4 (2017)
  3. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Gahloth D, Dunstan MS, Quaglia D, Klumbys E, Lockhart-Cairns MP, Hill AM, Derrington SR, Scrutton NS, Turner NJ, Leys D. Nat Chem Biol 13 975-981 (2017)
  4. β-Lactone formation during product release from a nonribosomal peptide synthetase. Schaffer JE, Reck MR, Prasad NK, Wencewicz TA. Nat Chem Biol 13 737-744 (2017)
  5. Structural basis for backbone N-methylation by an interrupted adenylation domain. Mori S, Pang AH, Lundy TA, Garzan A, Tsodikov OV, Garneau-Tsodikova S. Nat Chem Biol 14 428-430 (2018)
  6. SBSPKSv2: structure-based sequence analysis of polyketide synthases and non-ribosomal peptide synthetases. Khater S, Gupta M, Agrawal P, Sain N, Prava J, Gupta P, Grover M, Kumar N, Mohanty D. Nucleic Acids Res 45 W72-W79 (2017)
  7. Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host. González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J. Microb Ecol 73 616-629 (2017)
  8. Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Izoré T, Candace Ho YT, Kaczmarski JA, Gavriilidou A, Chow KH, Steer DL, Goode RJA, Schittenhelm RB, Tailhades J, Tosin M, Challis GL, Krenske EH, Ziemert N, Jackson CJ, Cryle MJ. Nat Commun 12 2511 (2021)
  9. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Kreitler DF, Gemmell EM, Schaffer JE, Wencewicz TA, Gulick AM. Nat Commun 10 3432 (2019)
  10. Pass-back chain extension expands multimodular assembly line biosynthesis. Zhang JJ, Tang X, Tang X, Huan T, Ross AC, Moore BS. Nat Chem Biol 16 42-49 (2020)
  11. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Baunach M, Chowdhury S, Stallforth P, Dittmann E. Mol Biol Evol 38 2116-2130 (2021)
  12. FRET monitoring of a nonribosomal peptide synthetase. Alfermann J, Sun X, Mayerthaler F, Morrell TE, Dehling E, Volkmann G, Komatsuzaki T, Yang H, Mootz HD. Nat Chem Biol 13 1009-1015 (2017)
  13. Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins. Jaremko MJ, Lee DJ, Patel A, Winslow V, Opella SJ, McCammon JA, Burkart MD. Biochemistry 56 5269-5273 (2017)
  14. Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Alonzo DA, Chiche-Lapierre C, Tarry MJ, Wang J, Schmeing TM. Nat Chem Biol 16 493-496 (2020)
  15. The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis. Schoppet M, Peschke M, Kirchberg A, Wiebach V, Süssmuth RD, Stegmann E, Cryle MJ. Chem Sci 10 118-133 (2019)
  16. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. Hansen BL, Pessotti RC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. mBio 11 e01917-20 (2020)
  17. Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. Corpuz JC, Podust LM, Davis TD, Jaremko MJ, Burkart MD. RSC Chem Biol 1 8-12 (2020)
  18. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Zhong L, Diao X, Zhang N, Li F, Zhou H, Chen H, Bai X, Ren X, Zhang Y, Wu D, Bian X. Nat Commun 12 296 (2021)
  19. Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis. Long DH, Townsend CA. Biochemistry 57 3353-3358 (2018)
  20. Cracking the Nonribosomal Code. Ackerley DF. Cell Chem Biol 23 535-537 (2016)
  21. Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Thapa HR, Robbins JM, Moore BS, Agarwal V. Biochemistry 58 918-929 (2019)
  22. Photo-crosslink analysis in nonribosomal peptide synthetases reveals aberrant gel migration of branched crosslink isomers and spatial proximity between non-neighboring domains. Dehling E, Rüschenbaum J, Diecker J, Dörner W, Mootz HD. Chem Sci 11 8945-8954 (2020)
  23. The carbon chain-selective adenylation enzyme TamA: the missing link between fatty acid and pyrrole natural product biosynthesis. Marchetti PM, Kelly V, Simpson JP, Ward M, Campopiano DJ. Org Biomol Chem 16 2735-2740 (2018)
  24. Conformational changes in the di-domain structure of Arabidopsis phosphoethanolamine methyltransferase leads to active-site formation. Lee SG, Jez JM. J Biol Chem 292 21690-21702 (2017)
  25. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. Goodrich AC, Meyers DJ, Frueh DP. J Biol Chem 292 10002-10013 (2017)
  26. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity. Scaglione A, Fullone MR, Montemiglio LC, Parisi G, Zamparelli C, Vallone B, Savino C, Grgurina I. FEBS J 284 2981-2999 (2017)
  27. Allosteric regulation alters carrier domain translocation in pyruvate carboxylase. Liu Y, Budelier MM, Stine K, St Maurice M. Nat Commun 9 1384 (2018)
  28. An enhanced chemoenzymatic method for loading substrates onto carrier protein domains. Kittilä T, Cryle MJ. Biochem Cell Biol 96 372-379 (2018)
  29. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. Throckmorton K, Vinnik V, Chowdhury R, Cook T, Chevrette MG, Maranas C, Pfleger B, Thomas MG. ACS Chem Biol 14 2044-2054 (2019)
  30. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. Mayerthaler F, Feldberg AL, Alfermann J, Sun X, Steinchen W, Yang H, Mootz HD. RSC Chem Biol 2 843-854 (2021)
  31. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions. Harden BJ, Frueh DP. Chembiochem 18 629-632 (2017)
  32. Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Wang J, Li D, Chen L, Cao W, Kong L, Zhang W, Croll T, Deng Z, Liang J, Wang Z. Nat Commun 13 592 (2022)
  33. Context-dependent activity of A domains in the tyrocidine synthetase. Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Sci Rep 9 5119 (2019)
  34. Revealing the Inter-Module Interactions of Multi-Modular Nonribosomal Peptide Synthetases. Lott JS, Lee TV. Structure 25 693-695 (2017)
  35. Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis. Ronnebaum TA, McFarlane JS, Prisinzano TE, Booker SJ, Lamb AL. Biochemistry 58 665-678 (2019)
  36. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. Lundy TA, Mori S, Garneau-Tsodikova S. RSC Chem Biol 1 233-250 (2020)
  37. Global protein dynamics as communication sensors in peptide synthetase domains. Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Sci Adv 8 eabn6549 (2022)
  38. Solid Phase Formylation of N-Terminus Peptides. Tornesello AL, Sanseverino M, Buonaguro FM. Molecules 21 E736 (2016)
  39. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A. Curr Res Struct Biol 2 14-24 (2020)
  40. Comment Biosynthesis: Reprogramming assembly lines. Menon BRK, Jenner M. Nat Chem 10 245-247 (2018)
  41. The Pbo Cluster from Pseudomonas syringae pv. Phaseolicola NPS3121 Is Thermoregulated and Required for Phaseolotoxin Biosynthesis. Guardado-Valdivia L, Chacón-López A, Murillo J, Poveda J, Hernández-Flores JL, Xoca-Orozco L, Aguilera S. Toxins (Basel) 13 628 (2021)
  42. An accurate strategy for pointing the key biocatalytic sites of bre2691A protein for modification of the brevilaterin from Brevibacillus laterosporus. Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. Microb Cell Fact 21 196 (2022)
  43. Capturing the Structure of the Substrate Bound Condensation Domain. Kittilä T, Cryle MJ. Cell Chem Biol 23 315-316 (2016)
  44. Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition. Corpuz JC, Patel A, Davis TD, Podust LM, McCammon JA, Burkart MD. ACS Chem Biol 17 2890-2898 (2022)
  45. Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Sandhu P, Kumari M, Naini K, Akhter Y. Curr Genet 63 553-576 (2017)
  46. High-Throughput Engineering of Nonribosomal Extension Modules. Camus A, Gantz M, Hilvert D. ACS Chem Biol 18 2516-2523 (2023)
  47. Manipulation of an existing crystal form unexpectedly results in interwoven packing networks with pseudo-translational symmetry. Reimer JM, Aloise MN, Powell HR, Schmeing TM. Acta Crystallogr D Struct Biol 72 1130-1136 (2016)
  48. Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids. Wang J, Xue N, Pan W, Tu R, Li S, Zhang Y, Mao Y, Liu Y, Cheng H, Guo Y, Yuan W, Ni X, Wang M. Nat Commun 14 6680 (2023)
  49. Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides. Hansen MH, Adamek M, Iftime D, Petras D, Schuseil F, Grond S, Stegmann E, Cryle MJ, Ziemert N. Nat Commun 14 7842 (2023)
  50. Structural Studies of Modular Nonribosomal Peptide Synthetases. Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Methods Mol Biol 2670 17-46 (2023)
  51. Structure of putative tumor suppressor ALDH1L1. Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Commun Biol 5 3 (2022)
  52. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Sun X, Alfermann J, Li H, Watkins MB, Chen YT, Morrell TE, Mayerthaler F, Wang CY, Komatsuzaki T, Chu JW, Ando N, Mootz HD, Yang H. Nat Chem (2023)
  53. Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence. Šprung M, Soldo B, Orhanović S, Bučević-Popović V. Protein J 36 202-211 (2017)
  54. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis. Maruyama C, Hamano Y. Methods Mol Biol 2670 3-16 (2023)
  55. The structure of a polyketide synthase bimodule core. Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. Sci Adv 8 eabo6918 (2022)
  56. Unraveling Structural Information of Multi-Domain Nonribosomal Peptide Synthetases by Using Photo-Cross-Linking Analysis with Genetic Code Expansion. Diecker J, Dörner W, Rüschenbaum J, Mootz HD. Methods Mol Biol 2670 165-185 (2023)