521p Citations

Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules.

Cell 62 539-48 (1990)
Related entries: 221p, 421p, 621p, 721p

Cited: 218 times
EuropePMC logo PMID: 2199064

Abstract

The X-ray structures of the guanine nucleotide binding domains (amino acids 1-166) of five mutants of the H-ras oncogene product p21 were determined. The mutations described are Gly-12----Arg, Gly-12----Val, Gln-61----His, Gln-61----Leu, which are all oncogenic, and the effector region mutant Asp-38----Glu. The resolutions of the crystal structures range from 2.0 to 2.6 A. Cellular and mutant p21 proteins are almost identical, and the only significant differences are seen in loop L4 and in the vicinity of the gamma-phosphate. For the Gly-12 mutants the larger side chains interfere with GTP binding and/or hydrolysis. Gln-61 in cellular p21 adopts a conformation where it is able to catalyze GTP hydrolysis. This conformation has not been found for the mutants of Gln-61. Furthermore, Leu-61 cannot activate the nucleophilic water because of the chemical nature of its side chain. The D38E mutation preserves its ability to bind GAP.

Articles - 521p mentioned but not cited (2)

  1. Regulation of GTPase function by autophosphorylation. Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Mol Cell 82 950-968.e14 (2022)
  2. Inhibitory effect of flavonoids on mutant H-Rasp protein. Masoodi TA, Alhamdanz AH. Bioinformation 5 11-15 (2010)


Reviews citing this publication (46)

  1. The GTPase superfamily: conserved structure and molecular mechanism. Bourne HR, Sanders DA, McCormick F. Nature 349 117-127 (1991)
  2. The P-loop--a common motif in ATP- and GTP-binding proteins. Saraste M, Sibbald PR, Wittinghofer A. Trends Biochem Sci 15 430-434 (1990)
  3. RAS oncogenes: the first 30 years. Malumbres M, Barbacid M. Nat Rev Cancer 3 459-465 (2003)
  4. Ras oncogenes: split personalities. Karnoub AE, Weinberg RA. Nat Rev Mol Cell Biol 9 517-531 (2008)
  5. Molecular themes in oncogenesis. Bishop JM. Cell 64 235-248 (1991)
  6. G protein mechanisms: insights from structural analysis. Sprang SR. Annu Rev Biochem 66 639-678 (1997)
  7. Ras plasma membrane signalling platforms. Hancock JF, Parton RG. Biochem J 389 1-11 (2005)
  8. The structure of Ras protein: a model for a universal molecular switch. Wittinghofer A, Pai EF. Trends Biochem Sci 16 382-387 (1991)
  9. G protein regulation of adenylate cyclase. Simonds WF. Trends Pharmacol Sci 20 66-73 (1999)
  10. Why nature really chose phosphate. Kamerlin SC, Sharma PK, Prasad RB, Warshel A. Q Rev Biophys 46 1-132 (2013)
  11. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Cox AD, Der CJ. Biochim Biophys Acta 1333 F51-71 (1997)
  12. The Rheb family of GTP-binding proteins. Aspuria PJ, Tamanoi F. Cell Signal 16 1105-1112 (2004)
  13. The universally conserved prokaryotic GTPases. Verstraeten N, Fauvart M, Versées W, Michiels J. Microbiol Mol Biol Rev 75 507-42, second and third pages of table of content (2011)
  14. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Maegley KA, Admiraal SJ, Herschlag D. Proc Natl Acad Sci U S A 93 8160-8166 (1996)
  15. The effector interactions of p21ras. Marshall MS. Trends Biochem Sci 18 250-254 (1993)
  16. Ras family genes: an interesting link between cell cycle and cancer. Macaluso M, Russo G, Cinti C, Bazan V, Gebbia N, Russo A. J Cell Physiol 192 125-130 (2002)
  17. The biochemistry of ras p21. Grand RJ, Owen D. Biochem J 279 ( Pt 3) 609-631 (1991)
  18. Improving Prospects for Targeting RAS. Singh H, Longo DL, Chabner BA. J Clin Oncol 33 3650-3659 (2015)
  19. Role of proto-oncogene activation in carcinogenesis. Anderson MW, Reynolds SH, You M, Maronpot RM. Environ Health Perspect 98 13-24 (1992)
  20. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Chung E, Kondo M. Immunol Res 49 248-268 (2011)
  21. GTP hydrolysis mechanism of Ras-like GTPases. Li G, Zhang XC. J Mol Biol 340 921-932 (2004)
  22. How does p21ras transform cells? Marshall CJ. Trends Genet 7 91-95 (1991)
  23. Ras p21: effects and regulation. Haubruck H, McCormick F. Biochim Biophys Acta 1072 215-229 (1991)
  24. Ras-A Molecular Switch Involved in Tumor Formation. Wittinghofer A, Waldmann H. Angew Chem Int Ed Engl 39 4192-4214 (2000)
  25. Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Aspenström P. Int J Mol Sci 19 E3949 (2018)
  26. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol 27 315-328 (2009)
  27. Death pathways triggered by activated Ras in cancer cells. Overmeyer JH, Maltese WA. Front Biosci (Landmark Ed) 16 1693-1713 (2011)
  28. Signal transduction pathways involving Ras. Mini review. Wiesmüller L, Wittinghofer F. Cell Signal 6 247-267 (1994)
  29. Farnesyltransferase as a target for anticancer drug design. Qian Y, Sebti SM, Hamilton AD. Biopolymers 43 25-41 (1997)
  30. Lessons from computer simulations of Ras proteins in solution and in membrane. Prakash P, Gorfe AA. Biochim Biophys Acta 1830 5211-5218 (2013)
  31. Substrate assisted catalysis -- application to G proteins. Kosloff M, Selinger Z. Trends Biochem Sci 26 161-166 (2001)
  32. Structures and functions of the K rev-1 transformation suppressor gene and its relatives. Noda M. Biochim Biophys Acta 1155 97-109 (1993)
  33. Small G proteins and their regulators in cellular signalling. Csépányi-Kömi R, Lévay M, Ligeti E. Mol Cell Endocrinol 353 10-20 (2012)
  34. Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Fowlis DJ, Balmain A. Eur J Cancer 29A 638-645 (1993)
  35. Potential drug targets: small GTPases that regulate leukocyte function. Benard V, Bokoch GM, Diebold BA. Trends Pharmacol Sci 20 365-370 (1999)
  36. ras-p21-induced cell transformation: unique signal transduction pathways and implications for the design of new chemotherapeutic agents. Pincus MR, Brandt-Rauf PW, Michl J, Carty RP, Friedman FK. Cancer Invest 18 39-50 (2000)
  37. Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. Mattingly RR. ISRN Oncol 2013 536529 (2013)
  38. Gene transfer therapy in cancer. Dorudi S, Northover JM, Vile RG. Br J Surg 80 566-572 (1993)
  39. Inhibition of Nonfunctional Ras. Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Cell Chem Biol 28 121-133 (2021)
  40. Protein targets for structure-based drug design. Walkinshaw MD. Med Res Rev 12 317-372 (1992)
  41. Chemistry and biology of Ras farnesyltransferase. Cho KN, Lee KI. Arch Pharm Res 25 759-769 (2002)
  42. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part. Chang YI, Damnernsawad A, Kong G, You X, Wang D, Zhang J. Small GTPases 8 233-236 (2017)
  43. "Troy-bodies": recombinant antibodies that target T cell epitopes to antigen presenting cells. Lund E, Rasmussen IB, Western KH, Eidem JK, Sandlie I, Bogen B. Int Rev Immunol 20 647-673 (2001)
  44. KRASG12R-Independent Macropinocytosis in Pancreatic Cancer. Hobbs GA, Der CJ. Subcell Biochem 98 205-221 (2022)
  45. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. J Mol Biol 434 167626 (2022)
  46. Peptides That Block RAS-p21 Protein-Induced Cell Transformation. Pincus MR, Lin B, Patel P, Gabutan E, Zohar N, Bowne WB. Biomedicines 11 471 (2023)

Articles citing this publication (170)

  1. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. EMBO J 16 2783-2793 (1997)
  2. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. Science 340 1100-1106 (2013)
  3. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Cell 150 1196-1208 (2012)
  4. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. Mol Cell 52 495-505 (2013)
  5. GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB. Nature 372 276-279 (1994)
  6. Single-molecule imaging analysis of Ras activation in living cells. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A. Proc Natl Acad Sci U S A 101 7317-7322 (2004)
  7. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Janakiraman M, Vakiani E, Zeng Z, Pratilas CA, Taylor BS, Chitale D, Halilovic E, Wilson M, Huberman K, Ricarte Filho JC, Persaud Y, Levine DA, Fagin JA, Jhanwar SC, Mariadason JM, Lash A, Ladanyi M, Saltz LB, Heguy A, Paty PB, Solit DB. Cancer Res 70 5901-5911 (2010)
  8. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Zipkin ID, Kindt RM, Kenyon CJ. Cell 90 883-894 (1997)
  9. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. Versele M, Thorner J. J Cell Biol 164 701-715 (2004)
  10. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. Gu Z, Jiang Q, Fu AK, Ip NY, Yan Z. J Neurosci 25 4974-4984 (2005)
  11. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Moran MF, Polakis P, McCormick F, Pawson T, Ellis C. Mol Cell Biol 11 1804-1812 (1991)
  12. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Buhrman G, Holzapfel G, Fetics S, Mattos C. Proc Natl Acad Sci U S A 107 4931-4936 (2010)
  13. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Peng M, Yin N, Li MO. Cell 159 122-133 (2014)
  14. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Schweins T, Geyer M, Scheffzek K, Warshel A, Kalbitzer HR, Wittinghofer A. Nat Struct Biol 2 36-44 (1995)
  15. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, Kato H, Matsubara T, Okada H, Yamamoto K. Cancer 121 2271-2280 (2015)
  16. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW. Proc Natl Acad Sci U S A 101 11099-11104 (2004)
  17. Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. Nunn MF, Marsh JW. J Virol 70 6157-6161 (1996)
  18. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, Escudero-Ibarz L, Al Seraihi AF, Richter J, Bernhart SH, Efeyan A, Iqbal S, Matthews J, Clear A, Guerra-Assunção JA, Bödör C, Quentmeier H, Mansbridge C, Johnson P, Davies A, Strefford JC, Packham G, Barrans S, Jack A, Du MQ, Calaminici M, Lister TA, Auer R, Montoto S, Gribben JG, Siebert R, Chelala C, Zoncu R, Sabatini DM, Fitzgibbon J. Nat Genet 48 183-188 (2016)
  19. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Hum Mutat 32 33-43 (2011)
  20. Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Hobbs GA, Baker NM, Miermont AM, Thurman RD, Pierobon M, Tran TH, Anderson AO, Waters AM, Diehl JN, Papke B, Hodge RG, Klomp JE, Goodwin CM, DeLiberty JM, Wang J, Ng RWS, Gautam P, Bryant KL, Esposito D, Campbell SL, Petricoin EF, Simanshu DK, Aguirre AJ, Wolpin BM, Wennerberg K, Rudloff U, Cox AD, Der CJ. Cancer Discov 10 104-123 (2020)
  21. Comparative analysis of the human gimap gene cluster encoding a novel GTPase family. Krücken J, Schroetel RM, Müller IU, Saïdani N, Marinovski P, Benten WP, Stamm O, Wunderlich F. Gene 341 291-304 (2004)
  22. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. Drugan JK, Khosravi-Far R, White MA, Der CJ, Sung YJ, Hwang YW, Campbell SL. J Biol Chem 271 233-237 (1996)
  23. Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae. Walworth NC, Brennwald P, Kabcenell AK, Garrett M, Novick P. Mol Cell Biol 12 2017-2028 (1992)
  24. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Hocker HJ, Cho KJ, Chen CY, Rambahal N, Sagineedu SR, Shaari K, Stanslas J, Hancock JF, Gorfe AA. Proc Natl Acad Sci U S A 110 10201-10206 (2013)
  25. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, Pannone L, Paolacci S, Zhang SC, Fodale V, Bocchinfuso G, Rossi C, Burkitt-Wright EM, Farrotti A, Stellacci E, Cecchetti S, Ferese R, Bottero L, Castro S, Fenneteau O, Brethon B, Sanchez M, Roberts AE, Yntema HG, Van Der Burgt I, Cianci P, Bondeson ML, Cristina Digilio M, Zampino G, Kerr B, Aoki Y, Loh ML, Palleschi A, Di Schiavi E, Carè A, Selicorni A, Dallapiccola B, Cirstea IC, Stella L, Zenker M, Gelb BD, Cavé H, Ahmadian MR, Tartaglia M. Hum Mol Genet 23 4315-4327 (2014)
  26. Guanosine triphosphatase stimulation of oncogenic Ras mutants. Ahmadian MR, Zor T, Vogt D, Kabsch W, Selinger Z, Wittinghofer A, Scheffzek K. Proc Natl Acad Sci U S A 96 7065-7070 (1999)
  27. Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. Al-Mulla F, Milner-White EJ, Going JJ, Birnie GD. J Pathol 187 433-438 (1999)
  28. Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Echard A, Opdam FJ, de Leeuw HJ, Jollivet F, Savelkoul P, Hendriks W, Voorberg J, Goud B, Fransen JA. Mol Biol Cell 11 3819-3833 (2000)
  29. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Privé GG, Milburn MV, Tong L, de Vos AM, Yamaizumi Z, Nishimura S, Kim SH. Proc Natl Acad Sci U S A 89 3649-3653 (1992)
  30. Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Bischoff F, Vahlkamp L, Molendijk A, Palme K. Plant Mol Biol 42 515-530 (2000)
  31. Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Buhrman G, Wink G, Mattos C. Structure 15 1618-1629 (2007)
  32. A detailed analysis of K-ras point mutations in relation to tumor progression and survival in colorectal cancer patients. Span M, Moerkerk PT, De Goeij AF, Arends JW. Int J Cancer 69 241-245 (1996)
  33. Why have mutagenesis studies not located the general base in ras p21. Schweins T, Langen R, Warshel A. Nat Struct Biol 1 476-484 (1994)
  34. Critical role for the Val/Gly86 HLA-DR beta dimorphism in autoantigen presentation to human T cells. Ong B, Willcox N, Wordsworth P, Beeson D, Vincent A, Altmann D, Lanchbury JS, Harcourt GC, Bell JI, Newsom-Davis J. Proc Natl Acad Sci U S A 88 7343-7347 (1991)
  35. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Reinhard C, Schweikert M, Wieland FT, Nickel W. Proc Natl Acad Sci U S A 100 8253-8257 (2003)
  36. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M. Proc Natl Acad Sci U S A 94 11623-11626 (1997)
  37. The Escherichia coli dnaA gene: four functional domains. Sutton MD, Kaguni JM. J Mol Biol 274 546-561 (1997)
  38. The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). Stewart M, Kent HM, McCoy AJ. J Mol Biol 284 1517-1527 (1998)
  39. Identification of residues of the H-ras protein critical for functional interaction with guanine nucleotide exchange factors. Mosteller RD, Han J, Broek D. Mol Cell Biol 14 1104-1112 (1994)
  40. Structural basis for the unique biological function of small GTPase RHEB. Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J. J Biol Chem 280 17093-17100 (2005)
  41. Allosteric modulation of Ras-GTP is linked to signal transduction through RAF kinase. Buhrman G, Kumar VS, Cirit M, Haugh JM, Mattos C. J Biol Chem 286 3323-3331 (2011)
  42. Intratumor heterogeneity of K-ras2 mutations in colorectal adenocarcinomas: association with degree of DNA aneuploidy. Giaretti W, Monaco R, Pujic N, Rapallo A, Nigro S, Geido E. Am J Pathol 149 237-245 (1996)
  43. Mutations of Ha-ras p21 that define important regions for the molecular mechanism of the SDC25 C-domain, a guanine nucleotide dissociation stimulator. Mistou MY, Jacquet E, Poullet P, Rensland H, Gideon P, Schlichting I, Wittinghofer A, Parmeggiani A. EMBO J 11 2391-2397 (1992)
  44. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. Gromov PS, Madsen P, Tomerup N, Celis JE. FEBS Lett 377 221-226 (1995)
  45. Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants. Muraoka S, Shima F, Araki M, Inoue T, Yoshimoto A, Ijiri Y, Seki N, Tamura A, Kumasaka T, Yamamoto M, Kataoka T. FEBS Lett 586 1715-1718 (2012)
  46. Characterization of mutations affecting the Escherichia coli essential GTPase era that suppress two temperature-sensitive dnaG alleles. Britton RA, Powell BS, Court DL, Lupski JR. J Bacteriol 179 4575-4582 (1997)
  47. Concepts in Ras-directed therapy. Kloog Y, Cox AD, Sinensky M. Expert Opin Investig Drugs 8 2121-2140 (1999)
  48. GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport. Richardson CJ, Jones S, Litt RJ, Segev N. Mol Cell Biol 18 827-838 (1998)
  49. Quantitative exploration of the molecular origin of the activation of GTPase. B RP, Plotnikov NV, Lameira J, Warshel A. Proc Natl Acad Sci U S A 110 20509-20514 (2013)
  50. Characterization of the autophosphorylation of Era, an essential Escherichia coli GTPase. Sood P, Lerner CG, Shimamoto T, Lu Q, Inouye M. Mol Microbiol 12 201-208 (1994)
  51. Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein. Pasqualato S, Cherfils J. Structure 13 533-540 (2005)
  52. Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle. Alberts P, Daumke O, Deverson EV, Howard JC, Knittler MR. Curr Biol 11 242-251 (2001)
  53. H-, K-, and N-ras gene mutation in atypical fibroxanthoma and malignant fibrous histiocytoma. Sakamoto A, Oda Y, Itakura E, Oshiro Y, Tamiya S, Honda Y, Ishihara A, Iwamoto Y, Tsuneyoshi M. Hum Pathol 32 1225-1231 (2001)
  54. High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. Zhu G, Liu J, Terzyan S, Zhai P, Li G, Zhang XC. J Biol Chem 278 2452-2460 (2003)
  55. TC21 causes transformation by Raf-independent signaling pathways. Graham SM, Vojtek AB, Huff SY, Cox AD, Clark GJ, Cooper JA, Der CJ. Mol Cell Biol 16 6132-6140 (1996)
  56. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Munder T, Fürst P. Mol Cell Biol 12 2091-2099 (1992)
  57. The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+. Schweins T, Scheffzek K, Assheuer R, Wittinghofer A. J Mol Biol 266 847-856 (1997)
  58. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Biol Chem 389 1163-1171 (2008)
  59. GTPase domains of ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Valencia A, Kjeldgaard M, Pai EF, Sander C. Proc Natl Acad Sci U S A 88 5443-5447 (1991)
  60. The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP. Resat H, Straatsma TP, Dixon DA, Miller JH. Proc Natl Acad Sci U S A 98 6033-6038 (2001)
  61. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms. Dubielecka PM, Cui P, Xiong X, Hossain S, Heck S, Angelov L, Kotula L. PLoS One 5 e10430 (2010)
  62. Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation. Gremer L, De Luca A, Merbitz-Zahradnik T, Dallapiccola B, Morlot S, Tartaglia M, Kutsche K, Ahmadian MR, Rosenberger G. Hum Mol Genet 19 790-802 (2010)
  63. Identification of amino acid residues required for Ras p21 target activation. Marshall MS, Davis LJ, Keys RD, Mosser SD, Hill WS, Scolnick EM, Gibbs JB. Mol Cell Biol 11 3997-4004 (1991)
  64. Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana. Liu C, Wang T, Zhang W, Li X. J Plant Physiol 165 777-787 (2008)
  65. Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Panepinto JC, Oliver BG, Amlung TW, Askew DS, Rhodes JC. Fungal Genet Biol 36 207-214 (2002)
  66. Kinetic mechanisms of mutation-dependent Harvey Ras activation and their relevance for the development of Costello syndrome. Wey M, Lee J, Jeong SS, Kim J, Heo J. Biochemistry 52 8465-8479 (2013)
  67. The free energy landscape in translational science: how can somatic mutations result in constitutive oncogenic activation? Tsai CJ, Nussinov R. Phys Chem Chem Phys 16 6332-6341 (2014)
  68. Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein. Klähn M, Schlitter J, Gerwert K. Biophys J 88 3829-3844 (2005)
  69. Biological and structural characterization of a Ras transforming mutation at the phenylalanine-156 residue, which is conserved in all members of the Ras superfamily. Quilliam LA, Zhong S, Rabun KM, Carpenter JW, South TL, Der CJ, Campbell-Burk S. Proc Natl Acad Sci U S A 92 1272-1276 (1995)
  70. Effects of constitutively active GTPases on fibroblast behavior. Zhang ZG, Lambert CA, Servotte S, Chometon G, Eckes B, Krieg T, Lapière CM, Nusgens BV, Aumailley M. Cell Mol Life Sci 63 82-91 (2006)
  71. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. Quilliam LA, Hisaka MM, Zhong S, Lowry A, Mosteller RD, Han J, Drugan JK, Broek D, Campbell SL, Der CJ. J Biol Chem 271 11076-11082 (1996)
  72. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Hoylaerts MF, Millán JL. Eur J Biochem 202 605-616 (1991)
  73. Specific K-ras2 mutations in human sporadic colorectal adenomas are associated with DNA near-diploid aneuploidy and inhibition of proliferation. Giaretti W, Rapallo A, Geido E, Sciutto A, Merlo F, Risio M, Rossini FP. Am J Pathol 153 1201-1209 (1998)
  74. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras. Xu S, Long BN, Boris GH, Chen A, Ni S, Kennedy MA. Acta Crystallogr D Struct Biol 73 970-984 (2017)
  75. Activated Ras induces cytoplasmic vacuolation and non-apoptotic death in glioblastoma cells via novel effector pathways. Kaul A, Overmeyer JH, Maltese WA. Cell Signal 19 1034-1043 (2007)
  76. Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells. Ding J, Soule G, Overmeyer JH, Maltese WA. Biochem Biophys Res Commun 312 670-675 (2003)
  77. Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles. Morcos P, Thapar N, Tusneem N, Stacey D, Tamanoi F. Mol Cell Biol 16 2496-2503 (1996)
  78. Molecular dynamics simulations of Gly-12-->Val mutant of p21(ras): dynamic inhibition mechanism. Futatsugi N, Tsuda M. Biophys J 81 3483-3488 (2001)
  79. Oncogenic HRAS mutations cause prolonged PI3K signaling in response to epidermal growth factor in fibroblasts of patients with Costello syndrome. Rosenberger G, Meien S, Kutsche K. Hum Mutat 30 352-362 (2009)
  80. Phosphate-binding loop and Rab GTPase function: mutations at Ser29 and Ala30 of Rab5 lead to loss-of-function as well as gain-of-function phenotype. Li G, Liang Z. Biochem J 355 681-689 (2001)
  81. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GM, Rottapel R, Stambolic V, Ikura M. Methods 57 473-485 (2012)
  82. Ras oncogene mutations in urine sediments of patients with bladder cancer. Buyru N, Tigli H, Ozcan F, Dalay N. J Biochem Mol Biol 36 399-402 (2003)
  83. Comparison of the low energy conformations of an oncogenic and a non-oncogenic p21 protein, neither of which binds GTP or GDP. Liwo A, Gibson KD, Scheraga HA, Brandt-Rauf PW, Monaco R, Pincus MR. J Protein Chem 13 237-251 (1994)
  84. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Mazhab-Jafari MT, Marshall CB, Ishiyama N, Ho J, Di Palma V, Stambolic V, Ikura M. Structure 20 1528-1539 (2012)
  85. Inhibition of ras-induced germinal vesicle breakdown in Xenopus oocytes by rap-1B. Campa MJ, Chang KJ, Molina y Vedia L, Reep BR, Lapetina EG. Biochem Biophys Res Commun 174 1-5 (1991)
  86. Interaction of GTPase-activating protein with p21ras, measured using a continuous assay for inorganic phosphate release. Webb MR, Hunter JL. Biochem J 287 ( Pt 2) 555-559 (1992)
  87. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm. Clausen R, Ma B, Nussinov R, Shehu A. PLoS Comput Biol 11 e1004470 (2015)
  88. Mechanisms underlying cognitive deficits in a mouse model for Costello Syndrome are distinct from other RASopathy mouse models. Schreiber J, Grimbergen LA, Overwater I, Vaart TV, Stedehouder J, Schuhmacher AJ, Guerra C, Kushner SA, Jaarsma D, Elgersma Y. Sci Rep 7 1256 (2017)
  89. Rho5p is involved in mediating the osmotic stress response in Saccharomyces cerevisiae, and its activity is regulated via Msi1p and Npr1p by phosphorylation and ubiquitination. Annan RB, Wu C, Waller DD, Whiteway M, Thomas DY. Eukaryot Cell 7 1441-1449 (2008)
  90. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. Sondek J, Shortle D. Proteins 13 132-140 (1992)
  91. Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras protein p21. Futatsugi N, Hata M, Hoshino T, Tsuda M. Biophys J 77 3287-3292 (1999)
  92. Comment How do the GTPases really work? Hilgenfeld R. Nat Struct Biol 2 3-6 (1995)
  93. Nucleotide binding to the G12V-mutant of Cdc42 investigated by X-ray diffraction and fluorescence spectroscopy: two different nucleotide states in one crystal. Rudolph MG, Wittinghofer A, Vetter IR. Protein Sci 8 778-787 (1999)
  94. Probing the role of loop 2 in Ras function with unnatural amino acids. Chung HH, Benson DR, Cornish VW, Schultz PG. Proc Natl Acad Sci U S A 90 10145-10149 (1993)
  95. A rab protein regulates the localization of secretory granules in AtT-20 cells. Ngsee JK, Fleming AM, Scheller RH. Mol Biol Cell 4 747-756 (1993)
  96. Deciphering the catalytic machinery in a universally conserved ribosome binding ATPase YchF. Tomar SK, Kumar P, Prakash B. Biochem Biophys Res Commun 408 459-464 (2011)
  97. GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Liang Z, Mather T, Li G. Biochem J 346 Pt 2 501-508 (2000)
  98. Inhibition of Ras oncogenic activity by Ras protooncogenes. Diaz R, Lue J, Mathews J, Yoon A, Ahn D, Garcia-España A, Leonardi P, Vargas MP, Pellicer A. Int J Cancer 113 241-248 (2005)
  99. Malaria-suppressible expression of the anti-apoptotic triple GTPase mGIMAP8. Krücken J, Epe M, Benten WP, Falkenroth N, Wunderlich F. J Cell Biochem 96 339-348 (2005)
  100. Overview of simulation studies on the enzymatic activity and conformational dynamics of the GTPase Ras. Prakash P, Gorfe AA. Mol Simul 40 839-847 (2014)
  101. The putative "switch 2" domain of the Ras-related GTPase, Rab1B, plays an essential role in the interaction with Rab escort protein. Overmeyer JH, Wilson AL, Erdman RA, Maltese WA. Mol Biol Cell 9 223-235 (1998)
  102. Evidence that oocyte maturation induced by an oncogenic ras-p21 protein and insulin is mediated by overlapping yet distinct mechanisms. Chung DL, Joran A, Friedman F, Robinson R, Brandt-Rauf PW, Weinstein IB, Ronai Z, Baskin L, Dykes DC, Murphy RB. Exp Cell Res 203 329-335 (1992)
  103. H-ras immunohistochemical expression and molecular analysis of urinary bladder lesions in grazing adult cattle exposed to bracken fern. Sardon D, de la Fuente I, Calonge E, Perez-Alenza MD, Castaño M, Dunner S, Peña L. J Comp Pathol 132 195-201 (2005)
  104. Functional interaction between p21rap1A and components of the budding pathway in Saccharomyces cerevisiae. McCabe PC, Haubruck H, Polakis P, McCormick F, Innis MA. Mol Cell Biol 12 4084-4092 (1992)
  105. Molecular cloning of ras and rap genes from Entamoeba histolytica. Shen PS, Lohia A, Samuelson J. Mol Biochem Parasitol 64 111-120 (1994)
  106. Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins. Eberth A, Dvorsky R, Becker CF, Beste A, Goody RS, Ahmadian MR. Biol Chem 386 1105-1114 (2005)
  107. Single somatic ras gene point mutation in soft tissue malignant fibrous histiocytomas. Bohle RM, Brettreich S, Repp R, Borkhardt A, Kosmehl H, Altmannsberger HM. Am J Pathol 148 731-738 (1996)
  108. Comparison of the computed three-dimensional structures of oncogenic forms (bound to GDP) of the ras-gene-encoded p21 protein with the structure of the normal (non-transforming) wild-type protein. Monaco R, Chen JM, Chung D, Brandt-Rauf P, Pincus MR. J Protein Chem 14 457-466 (1995)
  109. Distinct subclasses of small GTPases interact with guanine nucleotide exchange factors in a similar manner. Day GJ, Mosteller RD, Broek D. Mol Cell Biol 18 7444-7454 (1998)
  110. Selection of phage-displayed fab antibodies on the active conformation of ras yields a high affinity conformation-specific antibody preventing the binding of c-Raf kinase to Ras. Horn IR, Wittinghofer A, de Bruïne AP, Hoogenboom HR. FEBS Lett 463 115-120 (1999)
  111. The Intrinsic GDP/GTP Exchange Activities of Cdc42 and Rac1 Are Critical Determinants for Their Specific Effects on Mobilization of the Actin Filament System. Aspenström P. Cells 8 E759 (2019)
  112. Crystal structure of human Rad GTPase of the RGK-family. Yanuar A, Sakurai S, Kitano K, Hakoshima T. Genes Cells 11 961-968 (2006)
  113. Inactivation of Ras function by allele-specific peptide aptamers. Xu CW, Luo Z. Oncogene 21 5753-5757 (2002)
  114. Purification and characterization of a mutant DnaB protein specifically defective in ATP hydrolysis. Shrimankar P, Stordal L, Maurer R. J Bacteriol 174 7689-7696 (1992)
  115. Sequence-specific 1H and 15N resonance assignments and secondary structure of GDP-bound human c-Ha-Ras protein in solution. Muto Y, Yamasaki K, Ito Y, Yajima S, Masaki H, Uozumi T, Wälchli M, Nishimura S, Miyazawa T, Yokoyama S. J Biomol NMR 3 165-184 (1993)
  116. Simultaneous and independent tuning of RhoA and Rac1 activity with orthogonally inducible promoters. MacKay JL, Kumar S. Integr Biol (Camb) 6 885-894 (2014)
  117. Structural effects of the binding of GTP to the wild-type and oncogenic forms of the ras-gene-encoded p21 proteins. Monaco R, Chen JM, Friedman FK, Brandt-Rauf P, Chung D, Pincus MR. J Protein Chem 14 721-729 (1995)
  118. A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. Randak C, Neth P, Auerswald EA, Assfalg-Machleidt I, Roscher AA, Hadorn HB, Machleidt W. FEBS Lett 398 97-100 (1996)
  119. Functional and biochemical characterization of a T cell-associated anti-apoptotic protein, GIMAP6. Ho CH, Tsai SF. J Biol Chem 292 9305-9319 (2017)
  120. A switch I mutant of Cdc42 exhibits less conformational freedom. Chandrashekar R, Salem O, Krizova H, McFeeters R, Adams PD. Biochemistry 50 6196-6207 (2011)
  121. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy. Rudack T, Jenrich S, Brucker S, Vetter IR, Gerwert K, Kötting C. J Biol Chem 290 24079-24090 (2015)
  122. Genetic definition of ras effector elements. Stone JC, Blanchard RA. Mol Cell Biol 11 6158-6165 (1991)
  123. Sequential assignment of the backbone nuclei (1H, 15N and 13C) of c-H-ras p21 (1-166).GDP using a novel 4D NMR strategy. Campbell-Burk SL, Domaille PJ, Starovasnik MA, Boucher W, Laue ED. J Biomol NMR 2 639-646 (1992)
  124. Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation. Farrar CT, Ma J, Singel DJ, Halkides CJ. Structure 8 1279-1287 (2000)
  125. H-ras oncogene mutation in dedifferentiated liposarcoma. Polymerase chain reaction-restriction fragment length polymorphism analysis. Sakamoto A, Oda Y, Adachi T, Tamiya S, Matsuda S, Tanaka K, Iwamoto Y, Tsuneyoshi M. Am J Clin Pathol 115 235-242 (2001)
  126. Molecular dynamics of the H-ras gene-encoded p21 protein; identification of flexible regions and possible effector domains. Dykes DC, Friedman FK, Dykes SL, Murphy RB, Brandt-Rauf PW, Pincus MR. J Biomol Struct Dyn 11 443-458 (1993)
  127. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Bowne WB, Michl J, Bluth MH, Zenilman ME, Pincus MR. Cancer Ther 5B 331-344 (2007)
  128. Revisiting the structural flexibility of the complex p21(ras)-GTP: the catalytic conformation of the molecular switch II. Soares TA, Miller JH, Straatsma TP. Proteins 45 297-312 (2001)
  129. The GTP hydrolysis defect of the Saccharomyces cerevisiae mutant G-protein Gpa1(G50V). Kallal L, Fishel R. Yeast 16 387-400 (2000)
  130. A New View of Activating Mutations in Cancer. Nussinov R, Tsai CJ, Jang H. Cancer Res 82 4114-4123 (2022)
  131. Establishment of stable human fibroblast cell lines constitutively expressing active Rho-GTPases. Servotte S, Zhang Z, Lambert CA, Ho TT, Chometon G, Eckes B, Krieg T, Lapière CM, Nusgens BV, Aumailley M. Protoplasma 229 215-220 (2006)
  132. GTPase catalysis by Ras and other G-proteins: insights from Substrate Directed SuperImposition. Kosloff M, Selinger Z. J Mol Biol 331 1157-1170 (2003)
  133. Two distinct regions of Ras participate in functional interaction with GDP-GTP exchangers. Segal M, Marbach I, Willumsen BM, Levitzki A. Eur J Biochem 228 96-101 (1995)
  134. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes. Scala M, Nishikawa M, Ito H, Tabata H, Khan T, Accogli A, Davids L, Ruiz A, Chiurazzi P, Cericola G, Schulte B, Monaghan KG, Begtrup A, Torella A, Pinelli M, Denommé-Pichon AS, Vitobello A, Racine C, Mancardi MM, Kiss C, Guerin A, Wu W, Gabau Vila E, Mak BC, Martinez-Agosto JA, Gorin MB, Duz B, Bayram Y, Carvalho CMB, Vengoechea JE, Chitayat D, Tan TY, Callewaert B, Kruse B, Bird LM, Faivre L, Zollino M, Biskup S, Undiagnosed Diseases Network, Telethon Undiagnosed Diseases Program, Striano P, Nigro V, Severino M, Capra V, Costain G, Nagata KI. Brain 145 3308-3327 (2022)
  135. Mapping polycyclic aromatic hydrocarbon and aromatic amine-induced DNA damage in cancer-related genes at the sequence level. Tang MS, Pfeifer GP, Denissenko MF, Feng Z, Hu W, Pao A, Zheng Y, Zheng JB, Li H, Chen JX. Int J Hyg Environ Health 205 103-113 (2002)
  136. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. Coyle SM, Lim WA. Elife 5 e12435 (2016)
  137. Regulation of atrial natriuretic peptide secretion by a novel Ras-like protein. Rybkin II, Kim MS, Bezprozvannaya S, Qi X, Richardson JA, Plato CF, Hill JA, Bassel-Duby R, Olson EN. J Cell Biol 179 527-537 (2007)
  138. Role of the switch II region in the conformational transition of activation of Ha-ras-p21. Díaz JF, Escalona MM, Kuppens S, Engelborghs Y. Protein Sci 9 361-368 (2000)
  139. A conserved region of c-Ha-Ras is required for efficient GTPase stimulation by GTPase activating protein but not neurofibromin. Yoder-Hill J, Golubic M, Stacey DW. J Biol Chem 270 27615-27621 (1995)
  140. Characterization of the hinges of the effector loop in the reaction pathway of the activation of ras-proteins. Kinetics of binding of beryllium trifluoride to V29G and I36G mutants of Ha-ras-p21. Kuppens S, Díaz JF, Engelborghs Y. Protein Sci 8 1860-1866 (1999)
  141. Comparison of the average structures, from molecular dynamics, of complexes of GTPase activating protein (GAP) with oncogenic and wild-type ras-p21: identification of potential effector domains. Chen JM, Friedman FK, Brandt-Rauf PW, Pincus MR, Chie L. J Protein Chem 21 349-359 (2002)
  142. New insights into the molecular mechanism of the Rab GTPase Sec4p activation. Rinaldi FC, Packer M, Collins R. BMC Struct Biol 15 14 (2015)
  143. Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells. Wilson AL, Sheridan KM, Erdman RA, Maltese WA. Biochem J 318 ( Pt 3) 1007-1014 (1996)
  144. The GTPase activity of the Escherichia coli Ffh protein is important for normal growth. Samuelsson T, Olsson M, Wikström PM, Johansson BR. Biochim Biophys Acta 1267 83-91 (1995)
  145. Water Distribution within Wild-Type NRas Protein and Q61 Mutants during Unrestrained QM/MM Dynamics. Tichauer RH, Favre G, Cabantous S, Landa G, Hemeryck A, Brut M. Biophys J 115 1417-1430 (2018)
  146. Activated conformations of the ras-gene-encoded p21 protein. 1. An energy-refined structure for the normal p21 protein complexed with GDP. Dykes DC, Brandt-Rauf P, Luster SM, Chung D, Friedman FK, Pincus MR. J Biomol Struct Dyn 9 1025-1044 (1992)
  147. Establishment of an apoptosis-sensitive rat mammary carcinoma cell line with a mutation in the DNA-binding region of p53. Hamaguchi T, Matsuoka Y, Bechberger J, Ohnishi T, Fujita K, Naus CC, Kusunoki M, Tsubura A, Tsuda H. Cancer Lett 232 279-288 (2006)
  148. Harvey-ras gene expression and epidermal cell proliferation in dibenzo[a,l]pyrene-treated early preneoplastic SENCAR mouse skin. Khan GA, Bhattacharya G, Mailander PC, Meza JL, Hansen LA, Chakravarti D. J Invest Dermatol 125 567-574 (2005)
  149. Prediction of the three-dimensional structure of the rap-1A protein from its homology to the ras-gene-encoded p21 protein. Chen JM, Grad R, Monaco R, Pincus MR. J Protein Chem 15 11-15 (1996)
  150. v-Ha-Ras insertion/deletion mutants with reduced protease-inhibitory activity have no transforming activity. Sawada T, Sakiyama S, Hiwasa T. FEBS Lett 318 297-300 (1993)
  151. Automated oncogene detection in complex protein networks with applications to the MAPK signal transduction pathway. Pant D, Ghosh A. Biophys Chem 113 275-288 (2005)
  152. Functional robustness of adult spermatogonial stem cells after induction of hyperactive Hras. Yamada M, Cai W, Martin LA, N'Tumba-Byn T, Seandel M. PLoS Genet 15 e1008139 (2019)
  153. Identification and characterization of a novel variant in the highly conserved catalytic center of Rab11a. Uhlig M, Passlack W, Eckel J. Eur J Med Genet 49 29-36 (2006)
  154. 'Troy-bodies': antibodies as vector proteins for T cell epitopes. Lunde E, Rasmussen IB, Eidem JK, Gregers TF, Western KH, Bogen B, Sandlie I. Biomol Eng 18 109-116 (2001)
  155. Activated conformations of the ras-gene-encoded p21 protein. 2. Comparison of the computed and high-resolution x-ray crystallographic structures of Gly-12 p21. Dykes DC, Brandt-Rauf P, Luster SM, Friedman FK, Pincus MR. J Biomol Struct Dyn 10 905-918 (1993)
  156. Comparison of molecular dynamics averaged structures for complexes of normal and oncogenic ras-p21 with SOS nucleotide exchange protein, containing computed conformations for three crystallographically undefined domains, suggests a potential role of these domains in ras signaling. Duncan T, Chen JM, Friedman FK, Hyde M, Chie L, Pincus MR. Protein J 23 217-228 (2004)
  157. Activating mutations in the NH2- and COOH-terminal moieties of the Gs alpha subunit have dominant phenotypes and distinguishable kinetics of adenylyl cyclase stimulation. Gupta SK, Dhanasekaran N, Heasley LE, Johnson GL. J Cell Biochem 47 359-368 (1991)
  158. Elevated levels of STAT1 in Fanconi anemia group A lymphoblasts correlate with the cells' sensitivity to DNA interstrand crosslinking drugs. Prieto-Remón I, Sánchez-Carrera D, López-Duarte M, Richard C, Pipaón C. Haematologica 98 705-713 (2013)
  159. From EF-Tu to p21ras and back again. Wittinghofer A. Curr Biol 3 874-876 (1993)
  160. HPLC method to resolve, identify and quantify guanine nucleotides bound to recombinant ras GTPase. Hannan JP, Swisher GH, Martyr JG, Cordaro NJ, Erbse AH, Falke JJ. Anal Biochem 631 114338 (2021)
  161. Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy. Löw A, Sprinzl M, Limmer S. Eur J Biochem 213 781-788 (1993)
  162. Ras binding to a C-terminal region of GAP. Molloy DP, Owen D, Grand RJ. FEBS Lett 368 297-303 (1995)
  163. The Taspase1/Myosin1f-axis regulates filopodia dynamics. Hensel A, Stahl P, Moews L, König L, Patwardhan R, Höing A, Schulze N, Nalbant P, Stauber RH, Knauer SK. iScience 25 104355 (2022)
  164. Effect of human activated NRAS on replication of delNS1 H5N1 influenza virus in MDCK cells. Zhu J, Zhou H, Zou W, Jin M. Virol J 8 240 (2011)
  165. Molecular mechanism of constitutively active Rab11A was revealed by crystal structure of Rab11A S20V. Choi JY, Shin YC, Yoon JH, Kim CM, Lee JH, Jeon JH, Park HH. FEBS Lett 590 819-827 (2016)
  166. Computational Random Mutagenesis to Investigate RAS Mutant Signaling. Stites EC. Methods Mol Biol 2634 329-335 (2023)
  167. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. J Am Chem Soc 145 20302-20310 (2023)
  168. Rare HRAS1 alleles outside the VTR region in lymph nodes from patients with malignant lymphoma. Stul M, Baens M, Mecucci C, Van den Berghe H, Cassiman JJ. Cancer Genet Cytogenet 69 60-64 (1993)
  169. The Impact of KRAS Mutation in Patients With Sporadic Nonampullary Duodenal Epithelial Tumors. Kinugasa H, Kanzaki H, Tanaka T, Yamamoto S, Yamasaki Y, Nouso K, Ichimura K, Nakagawa M, Mitsuhashi T, Okada H. Clin Transl Gastroenterol 12 e00424 (2021)
  170. Towards understanding the molecular basis of thyroid cancer. Farid NR. Ann Saudi Med 15 252-275 (1995)


Related citations provided by authors (2)

  1. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation.. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A Nature 341 209-14 (1989)
  2. Refined Crystal Structure of the Triphosphate Conformation of H-Ras P21 at 1.35 Angstroms Resolution: Implications for the Mechanism of GTP Hydrolysis. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A EMBO J. 9 2351- (1990)