4v7h Citations

Comprehensive molecular structure of the eukaryotic ribosome.

Structure 17 1591-1604 (2009)
Cited: 114 times
EuropePMC logo PMID: 20004163

Abstract

Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than do bacterial ribosomes, which are implicated in extraribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2.

Reviews - 4v7h mentioned but not cited (1)

  1. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)

Articles - 4v7h mentioned but not cited (3)

  1. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules. Shan H, Wang Z, Zhang F, Xiong Y, Yin CC, Sun F. Protein Cell 7 46-62 (2016)
  2. The elusive quest for RNA knots. Burton AS, Burton AS, Di Stefano M, Lehman N, Orland H, Micheletti C. RNA Biol 13 134-139 (2016)
  3. Identification and characterization of molecular entities differentially expressed in bacteria genome upon treatment with glyphosate shock. Fabunmi BT, Adegaye AC, Ogunjo ST. Heliyon 9 e13868 (2023)


Reviews citing this publication (23)

  1. Molecular mechanism of scanning and start codon selection in eukaryotes. Hinnebusch AG. Microbiol Mol Biol Rev 75 434-67, first page of table of contents (2011)
  2. One core, two shells: bacterial and eukaryotic ribosomes. Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. Nat Struct Mol Biol 19 560-567 (2012)
  3. The structure and function of the eukaryotic ribosome. Wilson DN, Doudna Cate JH. Cold Spring Harb Perspect Biol 4 a011536 (2012)
  4. Mechanisms and implications of programmed translational frameshifting. Dinman JD. Wiley Interdiscip Rev RNA 3 661-673 (2012)
  5. The small subunit processome in ribosome biogenesis—progress and prospects. Phipps KR, Charette J, Baserga SJ. Wiley Interdiscip Rev RNA 2 1-21 (2011)
  6. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Wilson DN, Beckmann R. Curr Opin Struct Biol 21 274-282 (2011)
  7. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Valásek LS. Curr Protein Pept Sci 13 305-330 (2012)
  8. Three-dimensional modeling of protein interactions and complexes is going 'omics. Stein A, Mosca R, Aloy P. Curr Opin Struct Biol 21 200-208 (2011)
  9. Advances in integrative modeling of biomolecular complexes. Karaca E, Bonvin AM. Methods 59 372-381 (2013)
  10. Nascent polypeptide sequences that influence ribosome function. Cruz-Vera LR, Sachs MS, Squires CL, Yanofsky C. Curr Opin Microbiol 14 160-166 (2011)
  11. Structural analysis of ribosomal RACK1 and its role in translational control. Nielsen MH, Flygaard RK, Jenner LB. Cell Signal 35 272-281 (2017)
  12. Computational modeling of protein assemblies. Soni N, Madhusudhan MS. Curr Opin Struct Biol 44 179-189 (2017)
  13. Exploring the spatial and temporal organization of a cell's proteome. Beck M, Topf M, Frazier Z, Tjong H, Xu M, Zhang S, Alber F. J Struct Biol 173 483-496 (2011)
  14. Computational modeling of RNA 3D structure based on experimental data. Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Biosci Rep 39 BSR20180430 (2019)
  15. Roles of ribosomal proteins in the functioning of translational machinery of eukaryotes. Graifer D, Karpova G. Biochimie 109 1-17 (2015)
  16. The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. Collart MA. ISRN Mol Biol 2013 548359 (2013)
  17. Structural and functional topography of the human ribosome. Graifer D, Karpova G. Acta Biochim Biophys Sin (Shanghai) 44 281-299 (2012)
  18. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Fahl SP, Wang M, Zhang Y, Duc AC, Wiest DL. Crit Rev Immunol 35 379-400 (2015)
  19. The Arabidopsis 2'-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. Streit D, Schleiff E. Front Plant Sci 12 684626 (2021)
  20. From DNA to proteins via the ribosome: structural insights into the workings of the translation machinery. Agirrezabala X, Frank J. Hum Genomics 4 226-237 (2010)
  21. Future prospects. Rossmann MG, Battisti AJ, Plevka P. Adv Protein Chem Struct Biol 82 101-121 (2011)
  22. Automated Modeling and Validation of Protein Complexes in Cryo-EM Maps. Cragnolini T, Sweeney A, Topf M. Methods Mol Biol 2215 189-223 (2021)
  23. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Ochkasova A, Arbuzov G, Malygin A, Graifer D. Int J Mol Sci 24 11458 (2023)

Articles citing this publication (87)

  1. The structure of the eukaryotic ribosome at 3.0 Å resolution. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. Science 334 1524-1529 (2011)
  2. Structures of the human and Drosophila 80S ribosome. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R. Nature 497 80-85 (2013)
  3. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Science 331 730-736 (2011)
  4. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. Russel D, Lasker K, Webb B, Velázquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A. PLoS Biol 10 e1001244 (2012)
  5. RACK1, A multifaceted scaffolding protein: Structure and function. Adams DR, Ron D, Kiely PA. Cell Commun Signal 9 22 (2011)
  6. Crystal structure of the eukaryotic ribosome. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. Science 330 1203-1209 (2010)
  7. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S, Schilling J, Brooks CL, Karbstein K, Skiniotis G. Science 333 1449-1453 (2011)
  8. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. J Cell Biol 190 853-866 (2010)
  9. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Söding J, Westhof E, Wilson DN, Beckmann R. Proc Natl Acad Sci U S A 107 19748-19753 (2010)
  10. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. Kuroha K, Akamatsu M, Dimitrova L, Ito T, Kato Y, Shirahige K, Inada T. EMBO Rep 11 956-961 (2010)
  11. Trajectories of the ribosome as a Brownian nanomachine. Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A. Proc Natl Acad Sci U S A 111 17492-17497 (2014)
  12. Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome. Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Söding J, Westhof E, Wilson DN, Beckmann R. Proc Natl Acad Sci U S A 107 19754-19759 (2010)
  13. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Budkevich T, Giesebrecht J, Altman RB, Munro JB, Mielke T, Nierhaus KH, Blanchard SC, Spahn CM. Mol Cell 44 214-224 (2011)
  14. The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Cuchalová L, Kouba T, Herrmannová A, Dányi I, Chiu WL, Valásek L. Mol Cell Biol 30 4671-4686 (2010)
  15. Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. Sahasranaman A, Dembowski J, Strahler J, Andrews P, Maddock J, Woolford JL. EMBO J 30 4020-4032 (2011)
  16. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Kobayashi K, Kikuno I, Kuroha K, Saito K, Ito K, Ishitani R, Inada T, Nureki O. Proc Natl Acad Sci U S A 107 17575-17579 (2010)
  17. The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Chiu WL, Wagner S, Herrmannová A, Burela L, Zhang F, Saini AK, Valásek L, Hinnebusch AG. Mol Cell Biol 30 4415-4434 (2010)
  18. RiboVision suite for visualization and analysis of ribosomes. Bernier CR, Petrov AS, Waterbury CC, Jett J, Li F, Freil LE, Xiong X, Wang L, Migliozzi BL, Hershkovits E, Xue Y, Hsiao C, Bowman JC, Harvey SC, Grover MA, Wartell ZJ, Williams LD. Faraday Discuss 169 195-207 (2014)
  19. Integrative structure modeling with the Integrative Modeling Platform. Webb B, Viswanath S, Bonomi M, Pellarin R, Greenberg CH, Saltzberg D, Sali A. Protein Sci 27 245-258 (2018)
  20. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase. Jha S, Rollins MG, Fuchs G, Procter DJ, Hall EA, Cozzolino K, Sarnow P, Savas JN, Walsh D. Nature 546 651-655 (2017)
  21. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. J Appl Crystallogr 48 1314-1323 (2015)
  22. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, Wägele JW. Front Zool 7 26 (2010)
  23. Eukaryotic rpL10 drives ribosomal rotation. Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW, Dinman JD. Nucleic Acids Res 42 2049-2063 (2014)
  24. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F, Wagner S, Dányi I, Lukavsky PJ, Valásek LS. Nucleic Acids Res 40 2294-2311 (2012)
  25. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Kouba T, Rutkai E, Karásková M, Valášek L. Nucleic Acids Res 40 2683-2699 (2012)
  26. Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. Pintilie G, Chiu W. Biopolymers 97 742-760 (2012)
  27. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA. Nucleic Acids Res 39 2445-2457 (2011)
  28. The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis. Lopes AM, Miguel RN, Sargent CA, Ellis PJ, Amorim A, Affara NA. BMC Mol Biol 11 33 (2010)
  29. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Caulfield T, Devkota B. Proteins 80 2489-2500 (2012)
  30. Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA. Ikeuchi K, Inada T. Sci Rep 6 28234 (2016)
  31. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. Ramesh M, Woolford JL. RNA 22 1153-1162 (2016)
  32. Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit. Muhs M, Yamamoto H, Ismer J, Takaku H, Nashimoto M, Uchiumi T, Nakashima N, Mielke T, Hildebrand PW, Nierhaus KH, Spahn CM. Nucleic Acids Res 39 5264-5275 (2011)
  33. Protein-protein interactions within late pre-40S ribosomes. Campbell MG, Karbstein K. PLoS One 6 e16194 (2011)
  34. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. Bee A, Brewer D, Beesley C, Dodson A, Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, Djamgoz MB, Gosden CM, Ke Y, Foster CS. PLoS One 6 e22672 (2011)
  35. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. J Biol Chem 287 38390-38407 (2012)
  36. Characterization of the Interaction between hantavirus nucleocapsid protein (N) and ribosomal protein S19 (RPS19). Cheng E, Haque A, Rimmer MA, Hussein IT, Sheema S, Little A, Mir MA, Mir MA. J Biol Chem 286 11814-11824 (2011)
  37. Interaction of hantavirus nucleocapsid protein with ribosomal protein S19. Haque A, Mir MA. J Virol 84 12450-12453 (2010)
  38. Nucleolar trafficking of the mouse mammary tumor virus gag protein induced by interaction with ribosomal protein L9. Beyer AR, Bann DV, Rice B, Pultz IS, Kane M, Goff SP, Golovkina TV, Parent LJ. J Virol 87 1069-1082 (2013)
  39. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. Kouba T, Dányi I, Gunišová S, Munzarová V, Vlčková V, Cuchalová L, Neueder A, Milkereit P, Valášek LS. PLoS One 7 e40464 (2012)
  40. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Réblová K, Sponer J, Lankas F. Nucleic Acids Res 40 6290-6303 (2012)
  41. A molecular clamp ensures allosteric coordination of peptidyltransfer and ligand binding to the ribosomal A-site. Meskauskas A, Dinman JD. Nucleic Acids Res 38 7800-7813 (2010)
  42. Finding rigid bodies in protein structures: Application to flexible fitting into cryoEM maps. Pandurangan AP, Topf M. J Struct Biol 177 520-531 (2012)
  43. Purification, characterization and crystallization of the human 80S ribosome. Khatter H, Myasnikov AG, Mastio L, Billas IM, Birck C, Stella S, Klaholz BP. Nucleic Acids Res 42 e49 (2014)
  44. Characterization of hibernating ribosomes in mammalian cells. Krokowski D, Gaccioli F, Majumder M, Mullins MR, Yuan CL, Papadopoulou B, Merrick WC, Komar AA, Taylor D, Hatzoglou M. Cell Cycle 10 2691-2702 (2011)
  45. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee MG, Lee YH. Int J Oncol 49 1953-1962 (2016)
  46. A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding. Rhodin MH, Dinman JD. Nucleic Acids Res 38 8377-8389 (2010)
  47. An extensive network of information flow through the B1b/c intersubunit bridge of the yeast ribosome. Rhodin MH, Dinman JD. PLoS One 6 e20048 (2011)
  48. High throughput structural analysis of yeast ribosomes using hSHAPE. Leshin JA, Heselpoth R, Belew AT, Dinman J. RNA Biol 8 478-487 (2011)
  49. Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death. Hong M, Kim H, Kim I. Biochem Biophys Res Commun 450 673-678 (2014)
  50. Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. Nemoto N, Singh CR, Udagawa T, Wang S, Thorson E, Winter Z, Ohira T, Ii M, Valásek L, Brown SJ, Asano K. J Biol Chem 285 32200-32212 (2010)
  51. A region in the C-terminal domain of ribosomal protein SA required for binding of SA to the human 40S ribosomal subunit. Malygin AA, Babaylova ES, Loktev VB, Karpova GG. Biochimie 93 612-617 (2011)
  52. Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes. Rakauskaite R, Dinman JD. RNA 17 855-864 (2011)
  53. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. Shedlovskiy D, Zinskie JA, Gardner E, Pestov DG, Shcherbik N. J Biol Chem 292 18469-18485 (2017)
  54. Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system. McIntosh KB, Bhattacharya A, Willis IM, Warner JR. PLoS One 6 e23579 (2011)
  55. A unique box in 28S rRNA is shared by the enigmatic insect order Zoraptera and Dictyoptera. Wang Y, Engel MS, Rafael JA, Dang K, Wu H, Wang Y, Xie Q, Bu W. PLoS One 8 e53679 (2013)
  56. Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Schilling V, Peifer C, Buchhaupt M, Lamberth S, Lioutikov A, Rietschel B, Kötter P, Entian KD. Yeast 29 167-183 (2012)
  57. Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes. Park JH, Dias CA, Lee SB, Valentini SR, Sokabe M, Fraser CS, Park MH. Protein Eng Des Sel 24 301-309 (2011)
  58. Specialized yeast ribosomes: a customized tool for selective mRNA translation. Bauer JW, Brandl C, Haubenreisser O, Wimmer B, Weber M, Karl T, Klausegger A, Breitenbach M, Hintner H, von der Haar T, Tuite MF, Breitenbach-Koller L. PLoS One 8 e67609 (2013)
  59. Absence of knots in known RNA structures. Micheletti C, Di Stefano M, Orland H. Proc Natl Acad Sci U S A 112 2052-2057 (2015)
  60. Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes. Zhang F, Saini AK, Shin BS, Nanda J, Hinnebusch AG. Nucleic Acids Res 43 2293-2312 (2015)
  61. Eukaryote-specific motif of ribosomal protein S15 neighbors A site codon during elongation and termination of translation. Khairulina J, Graifer D, Bulygin K, Ven'yaminova A, Frolova L, Karpova G. Biochimie 92 820-825 (2010)
  62. Discovery of RSV-Induced BRD4 Protein Interactions Using Native Immunoprecipitation and Parallel Accumulation-Serial Fragmentation (PASEF) Mass Spectrometry. Mann M, Roberts DS, Zhu Y, Li Y, Zhou J, Ge Y, Brasier AR. Viruses 13 454 (2021)
  63. Identification of novel proteins associated with yeast snR30 small nucleolar RNA. Lemay V, Hossain A, Osheim YN, Beyer AL, Dragon F. Nucleic Acids Res 39 9659-9670 (2011)
  64. Ribosomal protein S5e is implicated in translation initiation through its interaction with the N-terminal domain of initiation factor eIF2α. Sharifulin D, Babaylova E, Kossinova O, Bartuli Y, Graifer D, Karpova G. Chembiochem 14 2136-2143 (2013)
  65. Identification of protein binding surfaces using surface triplet propensities. Mehio W, Kemp GJ, Taylor P, Walkinshaw MD. Bioinformatics 26 2549-2555 (2010)
  66. Influence of translation factor activities on start site selection in six different mRNAs. Barth-Baus D, Bhasker CR, Zoll W, Merrick WC. Translation (Austin) 1 e24419 (2013)
  67. FIRT: Filtered iterative reconstruction technique with information restoration. Chen Y, Zhang Y, Zhang K, Deng Y, Wang S, Zhang F, Sun F. J Struct Biol 195 49-61 (2016)
  68. Maize ZmRACK1 is involved in the plant response to fungal phytopathogens. Wang B, Yu J, Zhu D, Chang Y, Zhao Q. Int J Mol Sci 15 9343-9359 (2014)
  69. Modeling protein assemblies in the proteome. Kuzu G, Keskin O, Nussinov R, Gursoy A. Mol Cell Proteomics 13 887-896 (2014)
  70. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. Bowen AM, Musalgaonkar S, Moomau CA, Gulay SP, Mirvis M, Dinman JD. Translation (Austin) 3 e1117703 (2015)
  71. Yeast rRNA Expansion Segments: Folding and Function. Gómez Ramos LM, Smeekens JM, Kovacs NA, Bowman JC, Wartell RM, Wu R, Williams LD. J Mol Biol 428 4048-4059 (2016)
  72. A central fragment of ribosomal protein S26 containing the eukaryote-specific motif YxxPKxYxK is a key component of the ribosomal binding site of mRNA region 5' of the E site codon. Sharifulin D, Khairulina Y, Ivanov A, Meschaninova M, Ven'yaminova A, Graifer D, Karpova G. Nucleic Acids Res 40 3056-3065 (2012)
  73. Archiving and disseminating integrative structure models. Vallat B, Webb B, Westbrook J, Sali A, Berman HM. J Biomol NMR 73 385-398 (2019)
  74. Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes. Xie Q, Wang Y, Lin J, Qin Y, Wang Y, Bu W. PLoS One 7 e29468 (2012)
  75. Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae. Tirumalai MR, Kaelber JT, Park DR, Tran Q, Fox GE. FEBS Open Bio 10 1938-1946 (2020)
  76. Molecular characterization of gap region in 28S rRNA molecules in brine shrimp Artemia parthenogenetica and planarian Dugesia japonica. Sun S, Xie H, Sun Y, Song J, Li Z. Biochemistry (Mosc) 77 411-417 (2012)
  77. RPL17 Promotes Colorectal Cancer Proliferation and Stemness through ERK and NEK2/β-catenin Signaling Pathways. Ko MJ, Seo YR, Seo D, Park SY, Seo JH, Jeon EH, Kim SW, Park KU, Koo DB, Kim S, Bae JH, Song DK, Cho CH, Kim KS, Lee YH. J Cancer 13 2570-2583 (2022)
  78. Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression. Musalgaonkar S, Moomau CA, Dinman JD. Nucleic Acids Res 42 13384-13392 (2014)
  79. The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Rhodin MH, Rakauskaitė R, Dinman JD. Mol Genet Genomics 285 505-516 (2011)
  80. Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements. Juba AN, Chaput JC, Wellensiek BP. Biochemistry 57 6308-6318 (2018)
  81. Identification of ribosomal protein L9 as a novel regulator of proinflammatory damage-associated molecular pattern molecules. Watanabe M, Toyomura T, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Mol Biol Rep 49 2831-2838 (2022)
  82. Site-specific cleavage of the 40S ribosomal subunit reveals eukaryote-specific ribosomal protein S28 in the subunit head. Malygin AA, Karpova GG. FEBS Lett 584 4396-4400 (2010)
  83. Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins. Goyder MS, Willison KR, Klug DR, Demello AJ, Ces O. BMB Rep 45 233-238 (2012)
  84. CHOYCE: a web server for constrained homology modelling with cryoEM maps. Rawi R, Whitmore L, Topf M. Bioinformatics 26 1673-1674 (2010)
  85. Structure of the 40S ribosomal subunit of Plasmodium falciparum by homology and de novo modeling. Mwangi HN, Wagacha P, Mathenge P, Sijenyi F, Mulaa F. Acta Pharm Sin B 7 97-105 (2017)
  86. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. Proteomics 17 (2017)
  87. The acidic ribosomal protein P2 from Euplotes octocarinatus is phosphorylated at its N-terminal domain. Hu M, Li L, Chao J, Zhao Y, Zhang Z, Liang A. Biochem Cell Biol 92 23-32 (2014)