4ruc Citations

Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and Sulfolobus solfataricus P2 Polymerase IV.

J Am Chem Soc 137 7011-4 (2015)
Related entries: 4ru9, 4rua

Cited: 11 times
EuropePMC logo PMID: 25988947

Abstract

N(6)-(2-Deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG) arises from N7-methylation of deoxyguanosine followed by imidazole ring opening. The lesion has been reported to persist in animal tissues. Previous in vitro replication bypass investigations of the MeFapy-dG adduct revealed predominant insertion of C opposite the lesion, dependent on the identity of the DNA polymerase (Pol) and the local sequence context. Here we report crystal structures of ternary Pol·DNA·dNTP complexes between MeFapy-dG-adducted DNA template:primer duplexes and the Y-family polymerases human Pol η and P2 Pol IV (Dpo4) from Sulfolobus solfataricus. The structures of the hPol η and Dpo4 complexes at the insertion and extension stages, respectively, are representative of error-free replication, with MeFapy-dG in the anti conformation and forming Watson-Crick pairs with dCTP or dC.

Articles - 4ruc mentioned but not cited (1)

  1. Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and Sulfolobus solfataricus P2 Polymerase IV. Patra A, Banerjee S, Johnson Salyard TL, Malik CK, Christov PP, Rizzo CJ, Stone MP, Egli M. J Am Chem Soc 137 7011-7014 (2015)


Articles citing this publication (10)

  1. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η. Genna V, Gaspari R, Dal Peraro M, De Vivo M. Nucleic Acids Res 44 2827-2836 (2016)
  2. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. Koag MC, Jung H, Lee S. J Am Chem Soc 141 4584-4596 (2019)
  3. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Koag MC, Jung H, Lee S. Nucleic Acids Res 48 5119-5134 (2020)
  4. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Genna V, Colombo M, De Vivo M, Marcia M. Structure 26 40-50.e2 (2018)
  5. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η. Patra A, Zhang Q, Guengerich FP, Egli M. J Biol Chem 291 24304-24313 (2016)
  6. Bypass of the Major Alkylative DNA Lesion by Human DNA Polymerase η. Koag MC, Jung H, Kou Y, Lee S. Molecules 24 E3928 (2019)
  7. Enzymatic bypass and the structural basis of miscoding opposite the DNA adduct 1,N2-ethenodeoxyguanosine by human DNA translesion polymerase η. Ghodke PP, Mali JR, Patra A, Rizzo CJ, Guengerich FP, Egli M. J Biol Chem 296 100642 (2021)
  8. Configurational and Conformational Equilibria of N6-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG) Lesion in DNA. Bamberger SN, Malik CK, Voehler MW, Brown SK, Pan H, Johnson-Salyard TL, Rizzo CJ, Stone MP. Chem Res Toxicol 31 924-935 (2018)
  9. Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Polη/PCNA complex. Shen S, Davidson GA, Yang K, Zhuang Z. Nucleic Acids Res 49 9374-9388 (2021)
  10. Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4. Albrecht L, Wilson KA, Wetmore SD. Molecules 21 E822 (2016)