4mq7 Citations

Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells.

Abstract

The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.

Reviews - 4mq7 mentioned but not cited (1)

  1. The T cell antigen receptor: the Swiss army knife of the immune system. Attaf M, Legut M, Cole DK, Sewell AK. Clin Exp Immunol 181 1-18 (2015)

Articles - 4mq7 mentioned but not cited (3)

  1. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ. Immunity 39 1032-1042 (2013)
  2. Modeling T cell receptor recognition of CD1-lipid and MR1-metabolite complexes. Pierce BG, Vreven T, Weng Z. BMC Bioinformatics 15 319 (2014)
  3. Diversification of CD1 Molecules Shapes Lipid Antigen Selectivity. Paterson NM, Al-Zubieri H, Barber MF. Mol Biol Evol 38 2273-2284 (2021)


Reviews citing this publication (82)

  1. The burgeoning family of unconventional T cells. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. Nat Immunol 16 1114-1123 (2015)
  2. T cell antigen receptor recognition of antigen-presenting molecules. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. Annu Rev Immunol 33 169-200 (2015)
  3. γδ T cells in cancer. Silva-Santos B, Serre K, Norell H. Nat Rev Immunol 15 683-691 (2015)
  4. Innate immune recognition of cancer. Woo SR, Corrales L, Gajewski TF. Annu Rev Immunol 33 445-474 (2015)
  5. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Nat Rev Drug Discov 19 169-184 (2020)
  6. Human gamma delta T cells: Evolution and ligand recognition. Adams EJ, Gu S, Luoma AM. Cell Immunol 296 31-40 (2015)
  7. Lipid and small-molecule display by CD1 and MR1. Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB. Nat Rev Immunol 15 643-654 (2015)
  8. The Immunology of CD1- and MR1-Restricted T Cells. Mori L, Lepore M, De Libero G. Annu Rev Immunol 34 479-510 (2016)
  9. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Pellicci DG, Koay HF, Berzins SP. Nat Rev Immunol 20 756-770 (2020)
  10. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Legut M, Cole DK, Sewell AK. Cell Mol Immunol 12 656-668 (2015)
  11. Diverse developmental pathways of intestinal intraepithelial lymphocytes. McDonald BD, Jabri B, Bendelac A. Nat Rev Immunol 18 514-525 (2018)
  12. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Khairallah C, Chu TH, Sheridan BS. Front Immunol 9 2636 (2018)
  13. Type II NKT Cells and Their Emerging Role in Health and Disease. Dhodapkar MV, Kumar V. J Immunol 198 1015-1021 (2017)
  14. Human γδT-cell subsets and their involvement in tumor immunity. Wu D, Wu P, Qiu F, Wei Q, Huang J. Cell Mol Immunol 14 245-253 (2017)
  15. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: a new player on the cell therapy field? Siegers GM, Lamb LS. Mol Ther 22 1416-1422 (2014)
  16. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Tyler CJ, Doherty DG, Moser B, Eberl M. Cell Immunol 296 10-21 (2015)
  17. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Macho-Fernandez E, Brigl M. Front Immunol 6 362 (2015)
  18. Role of Innate T Cells in Anti-Bacterial Immunity. Gao Y, Williams AP. Front Immunol 6 302 (2015)
  19. Molecular Determinants of Target Cell Recognition by Human γδ T Cells. Simões AE, Di Lorenzo B, Silva-Santos B. Front Immunol 9 929 (2018)
  20. Current Advances in γδ T Cell-Based Tumor Immunotherapy. Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F, Meraviglia S. Front Immunol 8 1401 (2017)
  21. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Dar AA, Patil RS, Chiplunkar SV. Front Immunol 5 366 (2014)
  22. Ontogeny of Innate T Lymphocytes - Some Innate Lymphocytes are More Innate than Others. Vermijlen D, Prinz I. Front Immunol 5 486 (2014)
  23. Direct and Indirect Effects of Cytomegalovirus-Induced γδ T Cells after Kidney Transplantation. Couzi L, Pitard V, Moreau JF, Merville P, Déchanet-Merville J. Front Immunol 6 3 (2015)
  24. Regulatory functions of γδ T cells. Peters C, Kabelitz D, Wesch D. Cell Mol Life Sci 75 2125-2135 (2018)
  25. γδ T Cells and Tumor Microenvironment: From Immunosurveillance to Tumor Evasion. Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F, Meraviglia S. Front Immunol 9 1395 (2018)
  26. Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Davey MS, Willcox CR, Baker AT, Hunter S, Willcox BE. Trends Immunol 39 446-459 (2018)
  27. γδ T cell surveillance via CD1 molecules. Luoma AM, Castro CD, Adams EJ. Trends Immunol 35 613-621 (2014)
  28. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Gu S, Borowska MT, Boughter CT, Adams EJ. Semin Cell Dev Biol 84 65-74 (2018)
  29. Molecules and Mechanisms Implicated in the Peculiar Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Harly C, Peigné CM, Scotet E. Front Immunol 5 657 (2014)
  30. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Dasgupta S, Kumar V. Immunogenetics 68 665-676 (2016)
  31. ID'ing innate and innate-like lymphoid cells. Verykokakis M, Zook EC, Kee BL. Immunol Rev 261 177-197 (2014)
  32. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Trottein F, Paget C. Front Immunol 9 1750 (2018)
  33. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury. Ramirez K, Witherden DA, Havran WL. Cell Immunol 296 57-61 (2015)
  34. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Deseke M, Prinz I. Cell Mol Immunol 17 914-924 (2020)
  35. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Li Y, Li G, Zhang J, Wu X, Chen X. Front Immunol 11 619954 (2020)
  36. A multilayered immune system through the lens of unconventional T cells. Mayassi T, Barreiro LB, Rossjohn J, Jabri B. Nature 595 501-510 (2021)
  37. TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Szeto C, Lobos CA, Nguyen AT, Gras S. Int J Mol Sci 22 E68 (2020)
  38. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Baldwin CL, Telfer JC. Mol Immunol 66 35-47 (2015)
  39. Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Saura-Esteller J, de Jong M, King LA, Ensing E, Winograd B, de Gruijl TD, Parren PWHI, van der Vliet HJ. Front Immunol 13 915837 (2022)
  40. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. J Immunol Res 2018 5081634 (2018)
  41. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Perez C, Gruber I, Arber C. Front Immunol 11 583716 (2020)
  42. CD1d- and MR1-Restricted T Cells in Sepsis. Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SM. Front Immunol 6 401 (2015)
  43. Coevolution of T-cell receptors with MHC and non-MHC ligands. Castro CD, Luoma AM, Adams EJ. Immunol Rev 267 30-55 (2015)
  44. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones. De Libero G, Lau SY, Mori L. Front Immunol 5 679 (2014)
  45. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Shepherd FR, McLaren JE. Int J Mol Sci 21 E6144 (2020)
  46. The Role of Human γδ T Cells in Anti-Tumor Immunity and Their Potential for Cancer Immunotherapy. Liu Y, Zhang C. Cells 9 E1206 (2020)
  47. The processing and presentation of lipids and glycolipids to the immune system. Vartabedian VF, Savage PB, Teyton L. Immunol Rev 272 109-119 (2016)
  48. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. de Groot NG, Blokhuis JH, Otting N, Doxiadis GG, Bontrop RE. Immunol Rev 267 228-245 (2015)
  49. Activation of human T cells by CD1 and self-lipids. de Jong A. Immunol Rev 267 16-29 (2015)
  50. Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Telfer JC, Baldwin CL. Cell Immunol 296 76-86 (2015)
  51. Lipids hide or step aside for CD1-autoreactive T cell receptors. Cotton RN, Shahine A, Rossjohn J, Moody DB. Curr Opin Immunol 52 93-99 (2018)
  52. Donor-unrestricted T cells in the human CD1 system. Huang S, Moody DB. Immunogenetics 68 577-596 (2016)
  53. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Boutin L, Scotet E. Front Immunol 9 828 (2018)
  54. The Emerging Complexity of γδT17 Cells. McKenzie DR, Comerford I, Silva-Santos B, McColl SR. Front Immunol 9 796 (2018)
  55. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Chan KF, Duarte JDG, Ostrouska S, Behren A. Front Immunol 13 894315 (2022)
  56. Human T cells use CD1 and MR1 to recognize lipids and small molecules. Layre E, de Jong A, Moody DB. Curr Opin Chem Biol 23 31-38 (2014)
  57. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity. Kato S, Berzofsky JA, Terabe M. Front Immunol 9 314 (2018)
  58. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Zajonc DM. Immunogenetics 68 561-576 (2016)
  59. The emerging roles of γδ T cells in cancer immunotherapy. Mensurado S, Blanco-Domínguez R, Silva-Santos B. Nat Rev Clin Oncol 20 178-191 (2023)
  60. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Front Immunol 11 564499 (2020)
  61. Nonclassical T cells and their antigens in tuberculosis. De Libero G, Singhal A, Lepore M, Mori L. Cold Spring Harb Perspect Med 4 a018473 (2014)
  62. Our evolving understanding of the role of the γδ T cell receptor in γδ T cell mediated immunity. Gully BS, Rossjohn J, Davey MS. Biochem Soc Trans 49 1985-1995 (2021)
  63. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials. Salio M, Cerundolo V. Front Immunol 6 388 (2015)
  64. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Barros MS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. Front Immunol 12 729085 (2021)
  65. Multiple Receptor-Ligand Interactions Direct Tissue-Resident γδ T Cell Activation. Witherden DA, Ramirez K, Havran WL. Front Immunol 5 602 (2014)
  66. What rheumatologists need to know about innate lymphocytes. Exley MA, Tsokos GC, Mills KH, Elewaut D, Mulhearn B. Nat Rev Rheumatol 12 658-668 (2016)
  67. CD1: From Molecules to Diseases. Moody DB, Suliman S. F1000Res 6 1909 (2017)
  68. Molecular recognition of microbial lipid-based antigens by T cells. Gras S, Van Rhijn I, Shahine A, Le Nours J. Cell Mol Life Sci 75 1623-1639 (2018)
  69. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. Cancers (Basel) 13 6212 (2021)
  70. Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Park J, Sohn JH, Han SM, Park YJ, Huh JY, Choe SS, Kim JB. Front Immunol 11 598566 (2020)
  71. The Role of γδ T Cells in Fibrotic Diseases. Bank I. Rambam Maimonides Med J 7 (2016)
  72. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Liu Y, Han Y, Zeng S, Shen H. Cell Biosci 11 48 (2021)
  73. Novel Molecular Insights into Human Lipid-Mediated T Cell Immunity. Shahine A, Wegrecki M, Le Nours J. Int J Mol Sci 22 2617 (2021)
  74. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Song Y, Liu Y, Teo HY, Liu H. Front Immunol 13 914839 (2022)
  75. γδ T cells and their clinical application in colon cancer. Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. Front Immunol 14 1098847 (2023)
  76. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Schattgen SA, Thomas PG. Immunol Rev 284 79-90 (2018)
  77. CD1 displays its own negative regulators. Shahine A, Van Rhijn I, Rossjohn J, Moody DB. Curr Opin Immunol 83 102339 (2023)
  78. Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Barsac E, de Amat Herbozo C, Gonzalez L, Baranek T, Mallevaey T, Paget C. Cancers (Basel) 13 3578 (2021)
  79. Identification of T cell antigens in the 21st century, as difficult as ever. Lantz O, Teyton L. Semin Immunol 60 101659 (2022)
  80. Local γδ T cells: translating promise to practice in cancer immunotherapy. Zlatareva I, Wu Y. Br J Cancer 129 393-405 (2023)
  81. The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition. Capelluto DGS. Front Mol Biosci 9 1080161 (2022)
  82. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. Signal Transduct Target Ther 8 434 (2023)

Articles citing this publication (64)

  1. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Sandstrom A, Peigné CM, Léger A, Crooks JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E, Adams EJ. Immunity 40 490-500 (2014)
  2. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang JH, Wagner G, Reinherz EL, Lang MJ. Proc Natl Acad Sci U S A 112 1517-1522 (2015)
  3. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, McLaren JE, Hunter S, Salim M, Mohammed F, Price DA, Chudakov DM, Willcox BE. Nat Commun 8 14760 (2017)
  4. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, Marchant A, Vermijlen D. Proc Natl Acad Sci U S A 112 E556-65 (2015)
  5. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. Nat Commun 7 13839 (2017)
  6. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, Polyakova O, Roberts NA, Wesch D, Kabelitz D, Irving PM, John S, Mansour S, Bates PA, Vantourout P, Hayday AC. Nat Immunol 19 1352-1365 (2018)
  7. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Marlin R, Pappalardo A, Kaminski H, Willcox CR, Pitard V, Netzer S, Khairallah C, Lomenech AM, Harly C, Bonneville M, Moreau JF, Scotet E, Willcox BE, Faustin B, Déchanet-Merville J. Proc Natl Acad Sci U S A 114 3163-3168 (2017)
  8. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. Hunter S, Willcox CR, Davey MS, Kasatskaya SA, Jeffery HC, Chudakov DM, Oo YH, Willcox BE. J Hepatol 69 654-665 (2018)
  9. Dermal IL-17-producing γδ T cells establish long-lived memory in the skin. Hartwig T, Pantelyushin S, Croxford AL, Kulig P, Becher B. Eur J Immunol 45 3022-3033 (2015)
  10. Molecular Analysis of Lipid-Reactive Vδ1 γδ T Cells Identified by CD1c Tetramers. Roy S, Ly D, Castro CD, Li NS, Hawk AJ, Altman JD, Meredith SC, Piccirilli JA, Moody DB, Adams EJ. J Immunol 196 1933-1942 (2016)
  11. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. Roy S, Ly D, Li NS, Altman JD, Piccirilli JA, Moody DB, Adams EJ. Proc Natl Acad Sci U S A 111 E4648-57 (2014)
  12. Analysis of Immune Cells from Human Mammary Ductal Epithelial Organoids Reveals Vδ2+ T Cells That Efficiently Target Breast Carcinoma Cells in the Presence of Bisphosphonate. Zumwalde NA, Haag JD, Sharma D, Mirrielees JA, Wilke LG, Gould MN, Gumperz JE. Cancer Prev Res (Phila) 9 305-316 (2016)
  13. The molecular bases of δ/αβ T cell-mediated antigen recognition. Pellicci DG, Uldrich AP, Le Nours J, Ross F, Chabrol E, Eckle SB, de Boer R, Lim RT, McPherson K, Besra G, Howell AR, Moretta L, McCluskey J, Heemskerk MH, Gras S, Rossjohn J, Godfrey DI. J Exp Med 211 2599-2615 (2014)
  14. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails. Van Rhijn I, Iwany SK, Fodran P, Cheng TY, Gapin L, Minnaard AJ, Moody DB. Eur J Immunol 47 1525-1534 (2017)
  15. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis. Guo XZ, Dash P, Calverley M, Tomchuck S, Dallas MH, Thomas PG. Mol Ther Methods Clin Dev 3 15054 (2016)
  16. Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Le Nours J, Praveena T, Pellicci DG, Gherardin NA, Ross FJ, Lim RT, Besra GS, Keshipeddy S, Richardson SK, Howell AR, Gras S, Godfrey DI, Rossjohn J, Uldrich AP. Nat Commun 7 10570 (2016)
  17. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Benveniste PM, Roy S, Nakatsugawa M, Chen ELY, Nguyen L, Millar DG, Ohashi PS, Hirano N, Adams EJ, Zúñiga-Pflücker JC. Sci Immunol 3 eaav4036 (2018)
  18. Editorial: "Recent Advances in Gamma/Delta T Cell Biology: New Ligands, New Functions, and New Translational Perspectives". Kabelitz D, Déchanet-Merville J. Front Immunol 6 371 (2015)
  19. Human γδ T cells recognize CD1b by two distinct mechanisms. Reijneveld JF, Ocampo TA, Shahine A, Gully BS, Vantourout P, Hayday AC, Rossjohn J, Moody DB, Van Rhijn I. Proc Natl Acad Sci U S A 117 22944-22952 (2020)
  20. Human γδ T Cell Receptor Repertoires in Peripheral Blood Remain Stable Despite Clearance of Persistent Hepatitis C Virus Infection by Direct-Acting Antiviral Drug Therapy. Ravens S, Hengst J, Schlapphoff V, Deterding K, Dhingra A, Schultze-Florey C, Koenecke C, Cornberg M, Wedemeyer H, Prinz I. Front Immunol 9 510 (2018)
  21. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. Owens GC, Erickson KL, Malone CC, Pan C, Huynh MN, Chang JW, Chirwa T, Vinters HV, Mathern GW, Kruse CA. J Neuroinflammation 12 134 (2015)
  22. Identification of a tumor-specific allo-HLA-restricted γδTCR. Kierkels GJJ, Scheper W, Meringa AD, Johanna I, Beringer DX, Janssen A, Schiffler M, Aarts-Riemens T, Kramer L, Straetemans T, Heijhuurs S, Leusen JHW, San José E, Fuchs K, Griffioen M, Falkenburg JH, Bongiovanni L, de Bruin A, Vargas-Diaz D, Altelaar M, Heck AJR, Shultz LD, Ishikawa F, Nishimura MI, Sebestyén Z, Kuball J. Blood Adv 3 2870-2882 (2019)
  23. CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Cotton RN, Wegrecki M, Cheng TY, Chen YL, Veerapen N, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis R, Altman JD, de Jong A, Van Rhijn I, Clark RA, Besra GS, Ogg G, Rossjohn J, Moody DB. J Exp Med 218 e20202699 (2021)
  24. CD1d-restricted peripheral T cell lymphoma in mice and humans. Bachy E, Urb M, Chandra S, Robinot R, Bricard G, de Bernard S, Traverse-Glehen A, Gazzo S, Blond O, Khurana A, Baseggio L, Heavican T, Ffrench M, Crispatzu G, Mondière P, Schrader A, Taillardet M, Thaunat O, Martin N, Dalle S, Le Garff-Tavernier M, Salles G, Lachuer J, Hermine O, Asnafi V, Roussel M, Lamy T, Herling M, Iqbal J, Buffat L, Marche PN, Gaulard P, Kronenberg M, Defrance T, Genestier L. J Exp Med 213 841-857 (2016)
  25. A long-playing CD about the γδ TCR repertoire. Hayday A, Vantourout P. Immunity 39 994-996 (2013)
  26. Congress Chicago 2014--30 years of γδ T cells. Bonneville M, Chen ZW, Déchanet-Merville J, Eberl M, Fournié JJ, Jameson JM, Lopez RD, Massaia M, Silva-Santos B. Cell Immunol 296 3-9 (2015)
  27. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, Zhang D, Ren H. PLoS One 10 e0120086 (2015)
  28. Recognition of the antigen-presenting molecule MR1 by a Vδ3+ γδ T cell receptor. Rice MT, von Borstel A, Chevour P, Awad W, Howson LJ, Littler DR, Gherardin NA, Le Nours J, Giles EM, Berry R, Godfrey DI, Davey MS, Rossjohn J, Gully BS. Proc Natl Acad Sci U S A 118 e2110288118 (2021)
  29. Autoreactivity to Sulfatide by Human Invariant NKT Cells. Stax AM, Tuengel J, Girardi E, Kitano N, Allan LL, Liu V, Zheng D, Panenka WJ, Guillaume J, Wong CH, van Calenbergh S, Zajonc DM, van den Elzen P. J Immunol 199 97-106 (2017)
  30. High Interferon-γ Uniquely in Vδ1 T Cells Correlates with Markers of Inflammation and Axonal Damage in Early Multiple Sclerosis. Singh AK, Novakova L, Axelsson M, Malmeström C, Zetterberg H, Lycke J, Cardell SL. Front Immunol 8 260 (2017)
  31. High-throughput analysis of the human thymic Vδ1+ T cell receptor repertoire. Di Lorenzo B, Ravens S, Silva-Santos B. Sci Data 6 115 (2019)
  32. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. Boughter CT, Borowska MT, Guthmiller JJ, Bendelac A, Wilson PC, Roux B, Adams EJ. Elife 9 e61393 (2020)
  33. Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. Novakova L, Singh AK, Axelsson M, Ståhlman M, Adiels M, Malmeström C, Zetterberg H, Borén J, Lycke J, Cardell SL, Blomqvist M. J Neurochem 146 322-332 (2018)
  34. Dissection of the Human T-Cell Receptor γ Gene Repertoire in the Brain and Peripheral Blood Identifies Age- and Alzheimer's Disease-Associated Clonotype Profiles. Aliseychik M, Patrikeev A, Gusev F, Grigorenko A, Andreeva T, Biragyn A, Rogaev E. Front Immunol 11 12 (2020)
  35. Editorial: CD1- and MR1-Restricted T Cells in Antimicrobial Immunity. Haeryfar SM, Mallevaey T. Front Immunol 6 611 (2015)
  36. NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology. Mallis RJ, Brazin KN, Duke-Cohan JS, Hwang W, Wang JH, Wagner G, Arthanari H, Lang MJ, Reinherz EL. J Biomol NMR 73 319-332 (2019)
  37. TEG011 persistence averts extramedullary tumor growth without exerting off-target toxicity against healthy tissues in a humanized HLA-A*24:02 transgenic mice. Johanna I, Hernández-López P, Heijhuurs S, Bongiovanni L, de Bruin A, Beringer D, van Dooremalen S, Shultz LD, Ishikawa F, Sebestyen Z, Straetemans T, Kuball J. J Leukoc Biol 107 1069-1079 (2020)
  38. Association of Decreased Percentage of Vδ2+Vγ9+ γδ T Cells With Disease Severity in Multiple Sclerosis. Maimaitijiang G, Shinoda K, Nakamura Y, Masaki K, Matsushita T, Isobe N, Yamasaki R, Yoshikai Y, Kira JI. Front Immunol 9 748 (2018)
  39. Natural Self-Ligand Gamma Delta T Cell Receptors (γδTCRs) Insight: The Potential of Induced IgG. de Sousa TR, Victor JR. Vaccines (Basel) 8 E436 (2020)
  40. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. Lameris R, Shahine A, Pellicci DG, Uldrich AP, Gras S, Le Nours J, Groen RWJ, Vree J, Reddiex SJJ, Quiñones-Parra SM, Richardson SK, Howell AR, Zweegman S, Godfrey DI, de Gruijl TD, Rossjohn J, van der Vliet HJ. Nat Cancer 1 1054-1065 (2020)
  41. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Wegrecki M, Ocampo TA, Gunasinghe SD, von Borstel A, Tin SY, Reijneveld JF, Cao TP, Gully BS, Le Nours J, Moody DB, Van Rhijn I, Rossjohn J. Nat Commun 13 3872 (2022)
  42. CD36 family members are TCR-independent ligands for CD1 antigen-presenting molecules. Gherardin NA, Redmond SJ, McWilliam HEG, Almeida CF, Gourley KHA, Seneviratna R, Li S, De Rose R, Ross FJ, Nguyen-Robertson CV, Su S, Ritchie ME, Villadangos JA, Moody DB, Pellicci DG, Uldrich AP, Godfrey DI. Sci Immunol 6 eabg4176 (2021)
  43. Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs. Shi Y, Kawana-Tachikawa A, Gao F, Qi J, Liu C, Gao J, Cheng H, Ueno T, Iwamoto A, Gao GF. J Virol 91 e00725-17 (2017)
  44. Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines. Albutti A, Longet S, McEntee CP, Quinn S, Liddicoat A, Rîmniceanu C, Lycke N, Lynch L, Cardell S, Lavelle EC. Vaccines (Basel) 9 619 (2021)
  45. Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Almeida CF, Smith DGM, Cheng TY, Harpur CM, Batleska E, Nguyen-Robertson CV, Nguyen T, Thelemann T, Reddiex SJJ, Li S, Eckle SBG, Van Rhijn I, Rossjohn J, Uldrich AP, Moody DB, Williams SJ, Pellicci DG, Godfrey DI. Proc Natl Acad Sci U S A 118 e2104420118 (2021)
  46. Peripheral clonal selection shapes the human γδ T-cell repertoire. Di Lorenzo B, Déchanet-Merville J, Silva-Santos B. Cell Mol Immunol 14 733-735 (2017)
  47. A bispecific T cell engager recruits both type 1 NKT and Vγ9Vδ2-T cells for the treatment of CD1d-expressing hematological malignancies. Lameris R, Ruben JM, Iglesias-Guimarais V, de Jong M, Veth M, van de Bovenkamp FS, de Weerdt I, Kater AP, Zweegman S, Horbach S, Riedl T, Winograd B, Roovers RC, Adang AEP, de Gruijl TD, Parren PWHI, van der Vliet HJ. Cell Rep Med 4 100961 (2023)
  48. Detection of Cell Surface Ligands for Human Synovial γδ T Cells. Collins C, Lui Y, Santos AM, Ballif BA, Gogerly-Moragoda AM, Brouwer H, Ross R, Balagurunathan K, Sharma S, Wright GJ, Davis S, Budd RC. J Immunol 203 2369-2376 (2019)
  49. Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing. Mallis RJ, Duke-Cohan JS, Das DK, Akitsu A, Luoma AM, Banik D, Stephens HM, Tetteh PW, Castro CD, Krahnke S, Hussey RE, Lawney B, Brazin KN, Reche PA, Hwang W, Adams EJ, Lang MJ, Reinherz EL. Proc Natl Acad Sci U S A 118 e2023050118 (2021)
  50. Adding Help to an HLA-A*24:02 Tumor-Reactive γδTCR Increases Tumor Control. Johanna I, Hernández-López P, Heijhuurs S, Scheper W, Bongiovanni L, de Bruin A, Beringer DX, Oostvogels R, Straetemans T, Sebestyen Z, Kuball J. Front Immunol 12 752699 (2021)
  51. CD1d Selectively Down Regulates the Expression of the Oxidized Phospholipid-Specific E06 IgM Natural Antibody in Ldlr-/- Mice. Biswas TK, VanderLaan PA, Que X, Gonen A, Krishack P, Binder CJ, Witztum JL, Getz GS, Reardon CA. Antibodies (Basel) 9 E30 (2020)
  52. Expression of CD1d by astrocytes corresponds with relative activity in multiple sclerosis lesions. Muir FGW, Samadi-Bahrami Z, Moore GRW, Quandt JA. Brain Pathol 30 26-35 (2020)
  53. Recognition of synthetic polyanionic ligands underlies "spontaneous" reactivity of Vγ1 γδTCRs. Dunst J, Glaros V, Englmaier L, Sandoz PA, Önfelt B, Kisielow J, Kreslavsky T. J Leukoc Biol 107 1033-1044 (2020)
  54. Spectratype analysis of the T cell receptor δ CDR3 region of bovine γδ T cells responding to leptospira. Herzig CT, Mailloux VL, Baldwin CL. Immunogenetics 67 95-109 (2015)
  55. γδ T cell frequencies are altered in HIV positive pregnant South African women and are associated with preterm birth. Akoto C, Chan CYS, Ravi K, Zhang W, Vatish M, Norris SA, Hemelaar J. PLoS One 15 e0235162 (2020)
  56. CD1 and MR1 recognition by human γδ T cells. Van Rhijn I, Le Nours J. Mol Immunol 133 95-100 (2021)
  57. Necroptosis of Dendritic Cells Promotes Activation of γδ T Cells. Collins CC, Bashant K, Erikson C, Thwe PM, Fortner KA, Wang H, Morita CT, Budd RC. J Innate Immun 8 479-492 (2016)
  58. Regulation of Synovial γδ T Cell Ligand Expression by Mitochondrial Reactive Oxygen Species and Gasdermin-D. Collins CC, Hahn P, Jiang Z, Fitzgerald KA, Xiao TS, Budd RC. J Immunol 210 61-71 (2023)
  59. Bordeaux 2018: Wine, Cheese, and γδ T Cells. Edelblum K, Gustafsson K, Pennington DJ, Willcox BE, Ribot JC. Front Immunol 10 2544 (2019)
  60. Cord blood-derived Vδ2+ and Vδ2- T cells acquire differential cell state compositions upon in vitro expansion. Ng JWK, Tan KW, Guo DY, Lai JJH, Fan X, Poon Z, Lim TH, Lim AST, Lim TKH, Hwang WYK, Li S, Eaves CJ, Goh YT, Cheung AMS. Sci Adv 9 eadf3120 (2023)
  61. Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles. Contreras AV, Wiest DL. Methods Mol Biol 2580 71-88 (2023)
  62. Expression, Purification, and Crystallization of the Vγ9Vδ2 T-cell Receptor Recognizing Protein/Peptide Antigens. Cheng C, Zhao Z, Liu G. Protein J 42 778-791 (2023)
  63. Strategies to improve γδTCRs engineered T-cell therapies for the treatment of solid malignancies. Meringa AD, Hernández-López P, Cleven A, de Witte M, Straetemans T, Kuball J, Beringer DX, Sebestyen Z. Front Immunol 14 1159337 (2023)
  64. γδ T cells as immunotherapy for malaria: balancing challenges and opportunities. Vigário AM, Pamplona A. Front Immunol 14 1242306 (2023)