3pmn Citations

Replication infidelity via a mismatch with Watson-Crick geometry.

Proc Natl Acad Sci U S A 108 1862-7 (2011)
Related entries: 3pml, 3pnc

Cited: 91 times
EuropePMC logo PMID: 21233421

Abstract

In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.

Reviews - 3pmn mentioned but not cited (1)

  1. Structure-function studies of DNA polymerase λ. Bebenek K, Pedersen LC, Kunkel TA. Biochemistry 53 2781-2792 (2014)

Articles - 3pmn mentioned but not cited (2)

  1. Replication infidelity via a mismatch with Watson-Crick geometry. Bebenek K, Pedersen LC, Kunkel TA. Proc. Natl. Acad. Sci. U.S.A. 108 1862-1867 (2011)
  2. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (6)

  1. Role of tautomerism in RNA biochemistry. Singh V, Fedeles BI, Essigmann JM. RNA 21 1-13 (2015)
  2. New structural insights into the decoding mechanism: translation infidelity via a G·U pair with Watson-Crick geometry. Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. FEBS Lett. 587 1848-1857 (2013)
  3. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. Chem. Rev. 118 4177-4338 (2018)
  4. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. Westhof E, Yusupov M, Yusupova G. F1000Prime Rep 6 19 (2014)
  5. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. Vashishtha AK, Wang J, Konigsberg WH. J. Biol. Chem. 291 20869-20875 (2016)
  6. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Fedeles BI, Li D, Singh V. Front Mol Biosci 8 823253 (2021)

Articles citing this publication (82)

  1. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Lee H, Popodi E, Tang H, Foster PL. Proc. Natl. Acad. Sci. U.S.A. 109 E2774-83 (2012)
  2. A new understanding of the decoding principle on the ribosome. Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. Nature 484 256-259 (2012)
  3. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Wang W, Hellinga HW, Beese LS. Proc. Natl. Acad. Sci. U.S.A. 108 17644-17648 (2011)
  4. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Kimsey IJ, Petzold K, Sathyamoorthy B, Stein ZW, Al-Hashimi HM. Nature 519 315-320 (2015)
  5. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Brovarets OO, Hovorun DM. J. Biomol. Struct. Dyn. 32 127-154 (2014)
  6. Structural insights into the translational infidelity mechanism. Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. Nat Commun 6 7251 (2015)
  7. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Brovarets' OO, Yurenko YP, Dubey IY, Hovorun DM. J. Biomol. Struct. Dyn. 29 597-605 (2012)
  8. Does the tautomeric status of the adenine bases change upon the dissociation of the A*·A(syn) Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Brovarets' OO, Zhurakivsky RO, Hovorun DM. Phys Chem Chem Phys 16 3715-3725 (2014)
  9. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 33 28-55 (2015)
  10. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 32 1474-1499 (2014)
  11. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Brovarets' OO, Zhurakivsky RO, Hovorun DM. J Comput Chem 35 451-466 (2014)
  12. Capturing snapshots of APE1 processing DNA damage. Freudenthal BD, Beard WA, Cuneo MJ, Dyrkheeva NS, Wilson SH. Nat. Struct. Mol. Biol. 22 924-931 (2015)
  13. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 33 925-945 (2015)
  14. DPT tautomerisation of the G·A(syn) and A*·G*(syn) DNA mismatches: a QM/QTAIM combined atomistic investigation. Brovarets' OO, Hovorun DM. Phys Chem Chem Phys 16 9074-9085 (2014)
  15. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches? Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 33 2297-2315 (2015)
  16. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Gosavi RA, Moon AF, Kunkel TA, Pedersen LC, Bebenek K. Nucleic Acids Res. 40 7518-7527 (2012)
  17. The ribosome prohibits the G•U wobble geometry at the first position of the codon-anticodon helix. Rozov A, Westhof E, Yusupov M, Yusupova G. Nucleic Acids Res. 44 6434-6441 (2016)
  18. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Brovarets' OO, Hovorun DM. J Comput Chem 34 2577-2590 (2013)
  19. Polymerase specific error rates and profiles identified by single molecule sequencing. Hestand MS, Van Houdt J, Cristofoli F, Vermeesch JR. Mutat. Res. 784-785 39-45 (2016)
  20. DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Brovarets' OO, Zhurakivsky RO, Hovorun DM. J. Biomol. Struct. Dyn. 33 674-689 (2015)
  21. Sustained active site rigidity during synthesis by human DNA polymerase μ. Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Nat. Struct. Mol. Biol. 21 253-260 (2014)
  22. DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase. Xia S, Wang J, Konigsberg WH. J. Am. Chem. Soc. 135 193-202 (2013)
  23. How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Brovarets' OO, Hovorun DM. Phys Chem Chem Phys 16 15886-15899 (2014)
  24. A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight. Brovarets' OO, Hovorun DM. Phys Chem Chem Phys 17 21381-21388 (2015)
  25. Causality and Chance in the Development of Cancer. Luzzatto L, Pandolfi PP. N. Engl. J. Med. 373 84-88 (2015)
  26. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β. Koag MC, Nam K, Lee S. Nucleic Acids Res. 42 11233-11245 (2014)
  27. Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration. Oertell K, Chamberlain BT, Wu Y, Ferri E, Kashemirov BA, Beard WA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 53 1842-1848 (2014)
  28. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra. Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, Moon CD. PLoS Genet. 13 e1006570 (2017)
  29. Metal-dependent conformational activation explains highly promutagenic replication across O6-methylguanine by human DNA polymerase β. Koag MC, Lee S. J. Am. Chem. Soc. 136 5709-5721 (2014)
  30. Mycobacterial MazG safeguards genetic stability via housecleaning of 5-OH-dCTP. Lyu LD, Tang BK, Fan XY, Ma H, Zhao GP. PLoS Pathog. 9 e1003814 (2013)
  31. Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 33 2710-2715 (2015)
  32. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction. Mir A, Chen J, Robinson K, Lendy E, Goodman J, Neau D, Golden BL. Biochemistry 54 6369-6381 (2015)
  33. Flipping of the ribosomal A-site adenines provides a basis for tRNA selection. Zeng X, Chugh J, Casiano-Negroni A, Al-Hashimi HM, Brooks CL. J. Mol. Biol. 426 3201-3213 (2014)
  34. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Koag MC, Kou Y, Ouzon-Shubeita H, Lee S. Nucleic Acids Res. 42 8755-8766 (2014)
  35. Why base tautomerization does not cause errors in mRNA decoding on the ribosome. Satpati P, Åqvist J. Nucleic Acids Res. 42 12876-12884 (2014)
  36. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Kimsey IJ, Szymanski ES, Zahurancik WJ, Shakya A, Xue Y, Chu CC, Sathyamoorthy B, Suo Z, Al-Hashimi HM. Nature 554 195-201 (2018)
  37. MsDpo4-a DinB Homolog from Mycobacterium smegmatis-Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches. Sharma A, Nair DT. J Nucleic Acids 2012 285481 (2012)
  38. N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. Kou Y, Koag MC, Lee S. J. Am. Chem. Soc. 137 14067-14070 (2015)
  39. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs. Szymanski ES, Kimsey IJ, Al-Hashimi HM. J. Am. Chem. Soc. 139 4326-4329 (2017)
  40. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. Gouge J, Rosario S, Romain F, Poitevin F, Béguin P, Delarue M. EMBO J. 34 1126-1142 (2015)
  41. Mispairs with Watson-Crick base-pair geometry observed in ternary complexes of an RB69 DNA polymerase variant. Xia S, Konigsberg WH. Protein Sci. 23 508-513 (2014)
  42. Quantum mechanical analysis of nonenzymatic nucleotidyl transfer reactions: kinetic and thermodynamic effects of β-γ bridging groups of dNTP substrates. Zhang Z, Eloge J, Florián J. Biochemistry 53 4180-4191 (2014)
  43. Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Batra VK, Beard WA, Pedersen LC, Wilson SH. Structure 24 1863-1875 (2016)
  44. Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. Brovarets' OO, Pérez-Sánchez H. J. Biomol. Struct. Dyn. 35 3398-3411 (2017)
  45. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality? Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 33 2716-2720 (2015)
  46. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Çağlayan M. Nucleic Acids Res 48 3708-3721 (2020)
  47. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ. Klvaňa M, Bren U, Florián J. J Phys Chem B 120 13017-13030 (2016)
  48. Environmental Effects on Guanine-Thymine Mispair Tautomerization Explored with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. Li P, Rangadurai A, Al-Hashimi HM, Hammes-Schiffer S. J Am Chem Soc 142 11183-11191 (2020)
  49. The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. Lee CC, Yang YC, Goodman SD, Lin CJ, Chen YA, Wang YT, Cheng WC, Lin LI, Fang WH. DNA Repair (Amst.) 12 899-911 (2013)
  50. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4. Ouzon-Shubeita H, Jung H, Lee MH, Koag MC, Lee S. Biochem J 477 1601-1612 (2020)
  51. Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease 'driver' mutations. Villagrán MY, Miller JH. Sci Rep 5 13571 (2015)
  52. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda. Burak MJ, Guja KE, Garcia-Diaz M. Nucleic Acids Res. 43 8089-8099 (2015)
  53. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. Brovarets' OO, Hovorun DM. J. Biomol. Struct. Dyn. 37 1880-1907 (2019)
  54. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. Kamble P, Hall K, Chandak M, Tang Q, Çağlayan M. J Biol Chem 296 100427 (2021)
  55. Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs. Gu S, Szymanski ES, Rangadurai AK, Shi H, Liu B, Manghrani A, Al-Hashimi HM. Nat Chem Biol 19 900-910 (2023)
  56. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir. Markova N, Pejov L, Stoyanova N, Enchev V. J. Biomol. Struct. Dyn. 35 1168-1188 (2017)
  57. Influence of Electron-Holes on DNA Sequence-Specific Mutation Rates. Suárez-Villagrán MY, Azevedo RBR, Miller JH. Genome Biol Evol 10 1039-1047 (2018)
  58. Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β. Koag MC, Lee S. Biochem. J. 475 571-585 (2018)
  59. Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Oertell K, Kashemirov BA, Negahbani A, Minard C, Haratipour P, Alnajjar KS, Sweasy JB, Batra VK, Beard WA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 57 3925-3933 (2018)
  60. Probing conformational transitions towards mutagenic Watson-Crick-like G·T mismatches using off-resonance sugar carbon R relaxation dispersion. Rangadurai A, Szymanski ES, Kimsey I, Shi H, Al-Hashimi HM. J Biomol NMR 74 457-471 (2020)
  61. Quantum Tunnelling Effects in the Guanine-Thymine Wobble Misincorporation via Tautomerism. Slocombe L, Winokan M, Al-Khalili J, Sacchi M. J Phys Chem Lett 14 9-15 (2023)
  62. Smoking gun for a rare mutation mechanism. Goodman MF. Nature 554 180-181 (2018)
  63. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication. Kou Y, Koag MC, Lee S. Biochemistry 57 5105-5116 (2018)
  64. The A·T(rWC)/A·T(H)/A·T(rH) ↔ A·T*(rwWC)/A·T*(wH)/A·T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. Brovarets' OO, Tsiupa KS, Hovorun DM. RSC Adv 8 13433-13445 (2018)
  65. Towards a Molecular Understanding of Cation-Anion Interactions and Self-aggregation of Adeninate Salts in DMSO by NMR and UV Spectroscopy and Crystallography. Buyens DMS, Pilcher LA, Roduner E. Chemphyschem 22 2025-2033 (2021)
  66. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Jamsen JA, Shock DD, Wilson SH. Nat Commun 13 3193 (2022)
  67. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Oh J, Shan Z, Hoshika S, Xu J, Chong J, Benner SA, Lyumkis D, Wang D. Nat Commun 14 8219 (2023)
  68. Active Site Interactions Impact Phosphoryl Transfer during Replication of Damaged and Undamaged DNA by Escherichia coli DNA Polymerase I. Prakasha Gowda AS, Spratt TE. Chem. Res. Toxicol. 30 2033-2043 (2017)
  69. Deaminated purine bypass by DNA polymerase η. Andreeva A. Biochem J 478 1309-1313 (2021)
  70. Formic acid catalyzed isomerization of protonated cytosine: a lower barrier reaction for tautomer production of potential biological importance. Jin L, Lv M, Zhao M, Wang R, Zhao C, Lu J, Wang L, Wang W, Wei Y. Phys Chem Chem Phys 19 13515-13523 (2017)
  71. III. Functions of short lifetime structures at large 9: case of nucleic acids. Nishigaki K. Brief Funct Genomics 18 205-210 (2018)
  72. In crystallo observation of three metal ion promoted DNA polymerase misincorporation. Chang C, Lee Luo C, Gao Y. Nat Commun 13 2346 (2022)
  73. Mechanism of genome instability mediated by human DNA polymerase mu misincorporation. Guo M, Wang Y, Tang Y, Chen Z, Hou J, Dai J, Wang Y, Wang L, Xu H, Tian B, Hua Y, Zhao Y. Nat Commun 12 3759 (2021)
  74. Multiscale Modeling of Wobble to Watson-Crick-Like Guanine-Uracil Tautomerization Pathways in RNA. Chandorkar S, Raghunathan S, Jaganade T, Priyakumar UD. Int J Mol Sci 22 5411 (2021)
  75. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. Koag MC, Jung H, Lee S. J. Am. Chem. Soc. 141 4584-4596 (2019)
  76. Non-poissonian Distribution of Point Mutations in DNA. Turaeva N, Oksengendler BL. Front Chem 8 38 (2020)
  77. Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity. Park J, Herrmann GK, Mitchell PG, Sherman MB, Yin YW. Nat Struct Mol Biol 30 812-823 (2023)
  78. News Smoking gun for a rare mutation mechanism. Goodman MF. Nature 554 180-181 (2018)
  79. Structural insights into viral genome replication by the severe fever with thrombocytopenia syndrome virus L protein. Williams HM, Thorkelsson SR, Vogel D, Milewski M, Busch C, Cusack S, Grünewald K, Quemin ERJ, Rosenthal M. Nucleic Acids Res 51 1424-1442 (2023)
  80. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Tang Q, Gulkis M, McKenna R, Çağlayan M. Nat Commun 13 3860 (2022)
  81. U5 snRNA Interactions With Exons Ensure Splicing Precision. Artemyeva-Isman OV, Porter ACG. Front Genet 12 676971 (2021)
  82. Unexpected Routes of the Mutagenic Tautomerization of the T Nucleobase in the Classical A·T DNA Base Pairs: A QM/QTAIM Comprehensive View. Brovarets' OO, Tsiupa KS, Dinets A, Hovorun DM. Front Chem 6 532 (2018)