3pki Citations

Structure and biochemical functions of SIRT6.

J Biol Chem 286 14575-87 (2011)
Related entries: 3k35, 3pkj

Cited: 176 times
EuropePMC logo PMID: 21362626

Abstract

SIRT6 is a member of the evolutionarily conserved sirtuin family of NAD(+)-dependent protein deacetylases and functions in genomic stability and transcriptional control of glucose metabolism. Early reports suggested that SIRT6 performs ADP-ribosylation, whereas more recent studies have suggested that SIRT6 functions mainly as a histone deacetylase. Thus, the molecular functions of SIRT6 remain uncertain. Here, we perform biochemical, kinetic, and structural studies to provide new mechanistic insight into the functions of SIRT6. Utilizing three different assays, we provide biochemical and kinetic evidence that SIRT6-dependent histone deacetylation produces O-acetyl-ADP-ribose but at a rate ∼1,000 times slower than other highly active sirtuins. To understand the molecular basis for such low deacetylase activity, we solved the first crystal structures of this class IV sirtuin in complex with ADP-ribose and the non-hydrolyzable analog of O-acetyl-ADP-ribose, 2'-N-acetyl-ADP-ribose. The structures revealed unique features of human SIRT6, including a splayed zinc-binding domain and the absence of a helix bundle that in other sirtuin structures connects the zinc-binding motif and Rossmann fold domain. SIRT6 also lacks the conserved, highly flexible, NAD(+)-binding loop and instead contains a stable single helix. These differences led us to hypothesize that SIRT6, unlike all other studied sirtuins, would be able to bind NAD(+) in the absence of an acetylated substrate. Indeed, we found that SIRT6 binds NAD(+) with relatively high affinity (K(d) = 27 ± 1 μM) in the absence of an acetylated substrate. Isothermal titration calorimetry and tryptophan fluorescence binding assays suggested that ADP-ribose and NAD(+) induce different structural perturbations and that NADH does not bind to SIRT6. Collectively, these new insights imply a unique activating mechanism and/or the possibility that SIRT6 could act as an NAD(+) metabolite sensor.

Reviews - 3pki mentioned but not cited (4)

  1. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Hentchel KL, Escalante-Semerena JC. Microbiol Mol Biol Rev 79 321-346 (2015)
  2. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol Aspects Med 34 1088-1108 (2013)
  3. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)
  4. Emerging roles of SIRT6 in human diseases and its modulators. Liu G, Chen H, Liu H, Zhang W, Zhou J. Med Res Rev 41 1089-1137 (2021)

Articles - 3pki mentioned but not cited (14)

  1. Structure and biochemical functions of SIRT6. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. J Biol Chem 286 14575-14587 (2011)
  2. Site-specific mapping and quantification of protein S-sulphenylation in cells. Yang J, Gupta V, Carroll KS, Liebler DC. Nat Commun 5 4776 (2014)
  3. SIRT6 is a DNA double-strand break sensor. Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, Shirat I, Slobodnik Z, Einav M, Erdel F, Akabayov B, Toiber D. Elife 9 e51636 (2020)
  4. Synthesis and characterization of a SIRT6 open tubular column: predicting deacetylation activity using frontal chromatography. Singh N, Ravichandran S, Norton DD, Fugmann SD, Moaddel R. Anal Biochem 436 78-83 (2013)
  5. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Meng F, Qian M, Peng B, Peng L, Wang X, Zheng K, Liu Z, Tang X, Zhang S, Sun S, Cao X, Pang Q, Zhao B, Ma W, Songyang Z, Xu B, Zhu WG, Xu X, Liu B. Elife 9 e55828 (2020)
  6. Nitro-fatty acids as activators of hSIRT6 deacetylase activity. Carreño M, Bresque M, Machado MR, Santos L, Durán R, Vitturi DA, Escande C, Denicola A. J Biol Chem 295 18355-18366 (2020)
  7. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ. Khan D, Ara T, Ravi V, Rajagopal R, Tandon H, Parvathy J, Gonzalez EA, Asirvatham-Jeyaraj N, Krishna S, Mishra S, Raghu S, Bhati AS, Tamta AK, Dasgupta S, Kolthur-Seetharam U, Etchegaray JP, Mostoslavsky R, Rao PSM, Srinivasan N, Sundaresan NR. Cell Rep 35 109190 (2021)
  8. Pharmacophore model of the quercetin binding site of the SIRT6 protein. Ravichandran S, Singh N, Donnelly D, Migliore M, Johnson P, Fishwick C, Luke BT, Martin B, Maudsley S, Fugmann SD, Moaddel R. J Mol Graph Model 49 38-46 (2014)
  9. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Ringel AE, Roman C, Wolberger C. Protein Sci 23 1686-1697 (2014)
  10. SIRT6 in Vascular Diseases, from Bench to Bedside. Ren SC, Chen X, Gong H, Wang H, Wu C, Li PH, Chen XF, Qu JH, Tang X. Aging Dis 13 1015-1029 (2022)
  11. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  12. A Novel Mechanism for SIRT1 Activators That Does Not Rely on the Chemical Moiety Immediately C-Terminal to the Acetyl-Lysine of the Substrate. Yu ND, Wang B, Li XZ, Han HZ, Liu D. Molecules 27 2714 (2022)
  13. research-article Cryo-EM structure of the human Sirtuin 6-nucleosome complex. Chio US, Rechiche O, Bryll AR, Zhu J, Feldman JL, Peterson CL, Tan S, Armache JP. bioRxiv 2023.03.17.533206 (2023)
  14. Cryo-EM structure of the human Sirtuin 6-nucleosome complex. Chio US, Rechiche O, Bryll AR, Zhu J, Leith EM, Feldman JL, Peterson CL, Tan S, Armache JP. Sci Adv 9 eadf7586 (2023)


Reviews citing this publication (66)

  1. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cantó C, Menzies KJ, Auwerx J. Cell Metab 22 31-53 (2015)
  2. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Physiol Rev 92 1479-1514 (2012)
  3. Chromatin and beyond: the multitasking roles for SIRT6. Kugel S, Mostoslavsky R. Trends Biochem Sci 39 72-81 (2014)
  4. Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes. Etchegaray JP, Mostoslavsky R. Mol Cell 62 695-711 (2016)
  5. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Dai H, Sinclair DA, Ellis JL, Steegborn C. Pharmacol Ther 188 140-154 (2018)
  6. PARP-1 and gene regulation: progress and puzzles. Kraus WL, Hottiger MO. Mol Aspects Med 34 1109-1123 (2013)
  7. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Cantó C, Sauve AA, Bai P. Mol Aspects Med 34 1168-1201 (2013)
  8. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. D'Onofrio N, Servillo L, Balestrieri ML. Antioxid Redox Signal 28 711-732 (2018)
  9. Sirtuin catalysis and regulation. Feldman JL, Dittenhafer-Reed KE, Denu JM. J Biol Chem 287 42419-42427 (2012)
  10. SIRT6: Novel Mechanisms and Links to Aging and Disease. Tasselli L, Zheng W, Chua KF. Trends Endocrinol Metab 28 168-185 (2017)
  11. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  12. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Yuan H, Su L, Chen WY. Onco Targets Ther 6 1399-1416 (2013)
  13. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Li G, Tian Y, Zhu WG. Front Cell Dev Biol 8 576946 (2020)
  14. SIRT6, a Mammalian Deacylase with Multitasking Abilities. Chang AR, Ferrer CM, Mostoslavsky R. Physiol Rev 100 145-169 (2020)
  15. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Carafa V, Altucci L, Nebbioso A. Front Pharmacol 10 38 (2019)
  16. Structural basis for sirtuin activity and inhibition. Yuan H, Marmorstein R. J Biol Chem 287 42428-42435 (2012)
  17. Metabolic reprogramming and epigenetic modifications on the path to cancer. Sun L, Zhang H, Gao P. Protein Cell 13 877-919 (2022)
  18. The complex role of SIRT6 in carcinogenesis. Lerrer B, Gertler AA, Cohen HY. Carcinogenesis 37 108-118 (2016)
  19. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Zwaans BM, Lombard DB. Dis Model Mech 7 1023-1032 (2014)
  20. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D'Onofrio N, Balestrieri ML. Ageing Res Rev 35 301-311 (2017)
  21. Sirtuin 6: a review of biological effects and potential therapeutic properties. Beauharnois JM, Bolívar BE, Welch JT. Mol Biosyst 9 1789-1806 (2013)
  22. SIRT6, a protein with many faces. Gertler AA, Cohen HY. Biogerontology 14 629-639 (2013)
  23. Nuclear metabolism and the regulation of the epigenome. Boon R, Silveira GG, Mostoslavsky R. Nat Metab 2 1190-1203 (2020)
  24. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Van Meter M, Mao Z, Gorbunova V, Seluanov A. Aging (Albany NY) 3 829-835 (2011)
  25. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Khan RI, Nirzhor SSR, Akter R. Biomolecules 8 E44 (2018)
  26. Rejuvenating sirtuins: the rise of a new family of cancer drug targets. Bruzzone S, Parenti MD, Grozio A, Ballestrero A, Bauer I, Del Rio A, Nencioni A. Curr Pharm Des 19 614-623 (2013)
  27. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Klein MA, Denu JM. J Biol Chem 295 11021-11041 (2020)
  28. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Yang L, Ma X, He Y, Yuan C, Chen Q, Li G, Chen X. Sci China Life Sci 60 249-256 (2017)
  29. The sirtuins: Markers of metabolic health. Covington JD, Bajpeyi S. Mol Nutr Food Res 60 79-91 (2016)
  30. Emerging Therapeutic Potential of SIRT6 Modulators. Fiorentino F, Mai A, Rotili D. J Med Chem 64 9732-9758 (2021)
  31. Regulation of cellular homoeostasis by reversible lysine acetylation. Scott I. Essays Biochem 52 13-22 (2012)
  32. Next-generation of selective histone deacetylase inhibitors. Yang F, Zhao N, Ge D, Chen Y. RSC Adv 9 19571-19583 (2019)
  33. Sirtuin 6: linking longevity with genome and epigenome stability. Korotkov A, Seluanov A, Gorbunova V. Trends Cell Biol 31 994-1006 (2021)
  34. The Two-Faced Role of SIRT6 in Cancer. Fiorentino F, Carafa V, Favale G, Altucci L, Mai A, Rotili D. Cancers (Basel) 13 1156 (2021)
  35. The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. Fiorino E, Giudici M, Ferrari A, Mitro N, Caruso D, De Fabiani E, Crestani M. IUBMB Life 66 89-99 (2014)
  36. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Adv Nutr 10 520-536 (2019)
  37. An update on lysine deacylases targeting the expanding "acylome". Olsen CA. ChemMedChem 9 434-437 (2014)
  38. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J Struct Biol 196 534-542 (2016)
  39. Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. Shanak S, Saad B, Zaid H. Evid Based Complement Alternat Med 2019 3583067 (2019)
  40. The sirtuin 6: An overture in skin cancer. Garcia-Peterson LM, Guzmán-Pérez G, Krier CR, Ahmad N. Exp Dermatol 29 124-135 (2020)
  41. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Wei P, Li D. J Hematol Oncol 15 160 (2022)
  42. Schistosome sirtuins as drug targets. Lancelot J, Cabezas-Cruz A, Caby S, Marek M, Schultz J, Romier C, Sippl W, Jung M, Pierce RJ. Future Med Chem 7 765-782 (2015)
  43. Balancing NAD+ deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cercillieux A, Ciarlo E, Canto C. Cell Mol Life Sci 79 463 (2022)
  44. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Komaniecki G, Lin H. Front Cell Dev Biol 9 717503 (2021)
  45. Proteomics of Long-Lived Mammals. Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics 20 e1800416 (2020)
  46. Role of APD-Ribosylation in Bone Health and Disease. Wang C, Mbalaviele G. Cells 8 E1201 (2019)
  47. Is nuclear sirtuin SIRT6 a master regulator of immune function? Pillai VB, Gupta MP. Am J Physiol Endocrinol Metab 320 E399-E414 (2021)
  48. SIRT6 Widely Regulates Aging, Immunity, and Cancer. Li Y, Jin J, Wang Y. Front Oncol 12 861334 (2022)
  49. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. 3 Biotech 13 29 (2023)
  50. Virtual Screening in the Identification of Sirtuins' Activity Modulators. Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Molecules 27 5641 (2022)
  51. Mammalian Sirtuins and Their Relevance in Vascular Calcification. Pan X, Pi C, Ruan X, Zheng H, Zhang D, Liu X. Front Pharmacol 13 907835 (2022)
  52. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Int J Mol Sci 23 8672 (2022)
  53. A Role for Histone Deacetylases in the Biology and Treatment of Post-Traumatic Stress Disorder: What Do We Know and Where Do We Go from Here? Bonomi RE, Girgenti M, Krystal JH, Cosgrove KP. Complex Psychiatry 8 13-27 (2022)
  54. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: Focus on immune regulation. Ma M, Hou C, Liu J. Front Cardiovasc Med 10 1148486 (2023)
  55. Functional Diversity of SIRT7 Across Cellular Compartments: Insights and Perspectives. Wu S, Jia S. Cell Biochem Biophys 81 409-419 (2023)
  56. Implications of altered sirtuins in metabolic regulation and oral cancer. Quan X, Xin Y, Wang HL, Sun Y, Chen C, Zhang J. PeerJ 11 e14752 (2023)
  57. Metabolic Regulation of Lysine Acetylation: Implications in Cancer. Singh S, Senapati P, Kundu TK. Subcell Biochem 100 393-426 (2022)
  58. Metabolites of Life: Phosphate. Błaszczyk JW. Metabolites 13 860 (2023)
  59. Modulation of SIRT6 activity acts as an emerging therapeutic implication for pathological disorders in the skeletal system. Dong Z, Yang C, Tan J, Dou C, Chen Y. Genes Dis 10 864-876 (2023)
  60. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Guo Z, Li P, Ge J, Li H. Aging Dis 13 1787-1822 (2022)
  61. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Wang Y, Liu T, Cai Y, Liu W, Guo J. Front Endocrinol (Lausanne) 14 1244705 (2023)
  62. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Raghu S, Prabhashankar AB, Shivanaiah B, Tripathi E, Sundaresan NR. Subcell Biochem 100 337-360 (2022)
  63. Sirtuin family in autoimmune diseases. Tao Z, Jin Z, Wu J, Cai G, Yu X. Front Immunol 14 1186231 (2023)
  64. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Signal Transduct Target Ther 9 13 (2024)
  65. The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. Baran M, Miziak P, Stepulak A, Cybulski M. Int J Mol Sci 25 497 (2023)
  66. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Wu K, Wang Y, Liu R, Wang H, Rui T. Front Physiol 14 1207133 (2023)

Articles citing this publication (92)

  1. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H. Nature 496 110-113 (2013)
  2. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Feldman JL, Baeza J, Denu JM. J Biol Chem 288 31350-31356 (2013)
  3. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, Tan R, Simon M, Henderson S, Steffan J, Goldfarb A, Tam J, Zheng K, Cornwell A, Johnson A, Yang JN, Mao Z, Manta B, Dang W, Zhang Z, Vijg J, Wolfe A, Moody K, Kennedy BK, Bohmann D, Gladyshev VN, Seluanov A, Gorbunova V. Cell 177 622-638.e22 (2019)
  4. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Nat Commun 6 6263 (2015)
  5. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM. Genes Dev 29 1316-1325 (2015)
  6. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A, Zoppoli G, Cea M, Feldmann G, Mostoslavsky R, Ballestrero A, Patrone F, Bruzzone S, Nencioni A. J Biol Chem 287 40924-40937 (2012)
  7. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Rauh D, Rauh D, Fischer F, Gertz M, Lakshminarasimhan M, Bergbrede T, Aladini F, Kambach C, Becker CF, Zerweck J, Schutkowski M, Steegborn C. Nat Commun 4 2327 (2013)
  8. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Mol Cell Proteomics 11 60-76 (2012)
  9. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation. Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, Yoshida M, Denu JM. Biochemistry 54 3037-3050 (2015)
  10. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D, Thorgeirsson SS, Galle PR, Strand S. Hepatology 58 1054-1064 (2013)
  11. Identification of a cellularly active SIRT6 allosteric activator. Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J. Nat Chem Biol 14 1118-1126 (2018)
  12. Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z. Cell Rep 13 1396-1406 (2015)
  13. SIRT6 exhibits nucleosome-dependent deacetylase activity. Gil R, Barth S, Kanfi Y, Cohen HY. Nucleic Acids Res 41 8537-8545 (2013)
  14. Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development. Wu Y, Chen L, Wang Y, Li W, Lin Y, Yu D, Zhang L, Li F, Pan Z. Sci Rep 5 17602 (2015)
  15. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Abplanalp J, Leutert M, Frugier E, Nowak K, Feurer R, Kato J, Kistemaker HVA, Filippov DV, Moss J, Caflisch A, Hottiger MO. Nat Commun 8 2055 (2017)
  16. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. Yang X, Park SH, Chang HC, Shapiro JS, Vassilopoulos A, Sawicki KT, Chen C, Shang M, Burridge PW, Epting CL, Wilsbacher LD, Jenkitkasemwong S, Knutson M, Gius D, Ardehali H. J Clin Invest 127 1505-1516 (2017)
  17. Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules. You W, Rotili D, Li TM, Kambach C, Meleshin M, Schutkowski M, Chua KF, Mai A, Steegborn C. Angew Chem Int Ed Engl 56 1007-1011 (2017)
  18. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. Wang WW, Zeng Y, Wu B, Deiters A, Liu WR. ACS Chem Biol 11 1973-1981 (2016)
  19. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Madsen AS, Andersen C, Daoud M, Anderson KA, Laursen JS, Chakladar S, Huynh FK, Colaço AR, Backos DS, Fristrup P, Hirschey MD, Olsen CA. J Biol Chem 291 7128-7141 (2016)
  20. Natural polyphenols as sirtuin 6 modulators. Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, A Bohr V, Ferrucci L, Lahtela-Kakkonen M, Moaddel R. Sci Rep 8 4163 (2018)
  21. Identifying the functional contribution of the defatty-acylase activity of SIRT6. Zhang X, Khan S, Jiang H, Antonyak MA, Chen X, Spiegelman NA, Shrimp JH, Cerione RA, Lin H. Nat Chem Biol 12 614-620 (2016)
  22. Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer. Kugel S, Feldman JL, Klein MA, Silberman DM, Sebastián C, Mermel C, Dobersch S, Clark AR, Getz G, Denu JM, Mostoslavsky R. Cell Rep 13 479-488 (2015)
  23. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. He B, Hu J, Zhang X, Lin H. Org Biomol Chem 12 7498-7502 (2014)
  24. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway. Sun H, Wu Y, Fu D, Liu Y, Huang C. Stem Cells 32 1943-1955 (2014)
  25. Structure-based development of novel sirtuin inhibitors. Schlicker C, Boanca G, Lakshminarasimhan M, Steegborn C. Aging (Albany NY) 3 852-872 (2011)
  26. Association of the sirtuin and mitochondrial uncoupling protein genes with carotid plaque. Dong C, Della-Morte D, Wang L, Cabral D, Beecham A, McClendon MS, Luca CC, Blanton SH, Sacco RL, Rundek T. PLoS One 6 e27157 (2011)
  27. Sirtuin 6 protects the heart from hypoxic damage. Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A. Exp Cell Res 330 81-90 (2015)
  28. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Cabezas-Cruz A, Alberdi P, Ayllón N, Valdés JJ, Pierce R, Villar M, de la Fuente J. Epigenetics 11 303-319 (2016)
  29. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Chem Sci 12 464-476 (2020)
  30. Non-canonical mTORC2 Signaling Regulates Brown Adipocyte Lipid Catabolism through SIRT6-FoxO1. Jung SM, Hung CM, Hildebrand SR, Sanchez-Gurmaches J, Martinez-Pastor B, Gengatharan JM, Wallace M, Mukhopadhyay D, Martinez Calejman C, Luciano AK, Hsiao WY, Tang Y, Li H, Daniels DL, Mostoslavsky R, Metallo CM, Guertin DA. Mol Cell 75 807-822.e8 (2019)
  31. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. Sociali G, Grozio A, Caffa I, Schuster S, Becherini P, Damonte P, Sturla L, Fresia C, Passalacqua M, Mazzola F, Raffaelli N, Garten A, Kiess W, Cea M, Nencioni A, Bruzzone S. FASEB J 33 3704-3717 (2019)
  32. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Miteva YV, Cristea IM. Mol Cell Proteomics 13 168-183 (2014)
  33. C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. Chiang WC, Tishkoff DX, Yang B, Wilson-Grady J, Yu X, Mazer T, Eckersdorff M, Gygi SP, Lombard DB, Hsu AL. PLoS Genet 8 e1002948 (2012)
  34. Molecular pathways: emerging roles of mammalian Sirtuin SIRT7 in cancer. Paredes S, Villanova L, Chua KF. Clin Cancer Res 20 1741-1746 (2014)
  35. SIRT6 Protects Against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells. Zhong X, Huang M, Kim HG, Zhang Y, Chowdhury K, Cai W, Saxena R, Schwabe RF, Liangpunsakul S, Dong XC. Cell Mol Gastroenterol Hepatol 10 341-364 (2020)
  36. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration. Kang L, Hu J, Weng Y, Jia J, Zhang Y. Exp Cell Res 352 322-332 (2017)
  37. Posttranslational modification of Sirt6 activity by peroxynitrite. Hu S, Liu H, Ha Y, Luo X, Motamedi M, Gupta MP, Ma JX, Tilton RG, Zhang W. Free Radic Biol Med 79 176-185 (2015)
  38. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Santos-Barriopedro I, Bosch-Presegué L, Marazuela-Duque A, de la Torre C, Colomer C, Vazquez BN, Fuhrmann T, Martínez-Pastor B, Lu W, Braun T, Bober E, Jenuwein T, Serrano L, Esteller M, Chen Z, Barceló-Batllori S, Mostoslavsky R, Espinosa L, Vaquero A. Nat Commun 9 101 (2018)
  39. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. You W, Zheng W, Weiss S, Chua KF, Steegborn C. Sci Rep 9 19176 (2019)
  40. Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6. Wood M, Rymarchyk S, Zheng S, Cen Y. Arch Biochem Biophys 638 8-17 (2018)
  41. Mechanism of activation for the sirtuin 6 protein deacylase. Klein MA, Liu C, Kuznetsov VI, Feltenberger JB, Tang W, Denu JM. J Biol Chem 295 1385-1399 (2020)
  42. Studying SIRT6 regulation using H3K56 based substrate and small molecules. Kokkonen P, Rahnasto-Rilla M, Mellini P, Jarho E, Lahtela-Kakkonen M, Kokkola T. Eur J Pharm Sci 63 71-76 (2014)
  43. SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan. Roichman A, Kanfi Y, Glazz R, Naiman S, Amit U, Landa N, Tinman S, Stein I, Pikarsky E, Leor J, Cohen HY. J Gerontol A Biol Sci Med Sci 72 603-615 (2017)
  44. The Oxidative State of Cysteine Thiol 144 Regulates the SIRT6 Glucose Homeostat. Long D, Wu H, Tsang AW, Poole LB, Yoza BK, Wang X, Vachharajani V, Furdui CM, McCall CE. Sci Rep 7 11005 (2017)
  45. Peptides and Pseudopeptides as SIRT6 Deacetylation Inhibitors. Kokkonen P, Rahnasto-Rilla M, Kiviranta PH, Huhtiniemi T, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M. ACS Med Chem Lett 3 969-974 (2012)
  46. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. Kalous KS, Wynia-Smith SL, Olp MD, Smith BC. J Biol Chem 291 25398-25410 (2016)
  47. SIRT6 inhibits growth of gastric cancer by inhibiting JAK2/STAT3 pathway. Zhou J, Wu A, Yu X, Zhu J, Dai H. Oncol Rep 38 1059-1066 (2017)
  48. MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Shang JL, Ning SB, Chen YY, Chen TX, Zhang J. Acta Pharmacol Sin 42 120-131 (2021)
  49. Mammalian target of rapamycin complex 2 (mTORC2) controls glycolytic gene expression by regulating Histone H3 Lysine 56 acetylation. Vadla R, Haldar D. Cell Cycle 17 110-123 (2018)
  50. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D3 in colorectal cancer. Shang J, Zhu Z, Chen Y, Song J, Huang Y, Song K, Zhong J, Xu X, Wei J, Wang C, Cui L, Liu CY, Zhang J. Theranostics 10 5845-5864 (2020)
  51. Ablation of LMO4 in glutamatergic neurons impairs leptin control of fat metabolism. Zhou X, Gomez-Smith M, Qin Z, Duquette PM, Cardenas-Blanco A, Rai PS, Harper ME, Tsai EC, Anisman H, Chen HH. Cell Mol Life Sci 69 819-828 (2012)
  52. Identification of novel interacting partners of Sirtuin6. Polyakova O, Borman S, Grimley R, Vamathevan J, Hayes B, Solari R. PLoS One 7 e51555 (2012)
  53. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Mol Cell Proteomics 11 M111.015156 (2012)
  54. SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Simonet NG, Thackray JK, Vazquez BN, Ianni A, Espinosa-Alcantud M, Morales-Sanfrutos J, Hurtado-Bagès S, Sabidó E, Buschbeck M, Tischfield J, De La Torre C, Esteller M, Braun T, Olivella M, Serrano L, Vaquero A. Sci Adv 6 eaaz2590 (2020)
  55. Multivalent interactions drive nucleosome binding and efficient chromatin deacetylation by SIRT6. Liu WH, Zheng J, Feldman JL, Klein MA, Kuznetsov VI, Peterson CL, Griffin PR, Denu JM. Nat Commun 11 5244 (2020)
  56. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Zhang Q, Chen Y, Ni D, Huang Z, Wei J, Feng L, Su JC, Wei Y, Ning S, Yang X, Zhao M, Qiu Y, Song K, Yu Z, Xu J, Li X, Lin H, Lu S, Zhang J. Acta Pharm Sin B 12 876-889 (2022)
  57. Selectivity hot-spots of sirtuin catalytic cores. Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Mol Biosyst 11 2263-2272 (2015)
  58. Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Bharadwaj S, Dubey A, Kamboj NK, Sahoo AK, Kang SG, Yadava U. Sci Rep 11 10169 (2021)
  59. New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Soto S, Vaz E, Dell'Aversana C, Álvarez R, Altucci L, de Lera ÁR. Org Biomol Chem 10 2101-2112 (2012)
  60. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn. Nguyen Vo TH, Tran N, Nguyen D, Nguyen D, Le L. Springerplus 5 1359 (2016)
  61. Hsp90 Stabilizes SIRT1 Orthologs in Mammalian Cells and C. elegans. Nguyen MT, Somogyvári M, Sőti C. Int J Mol Sci 19 E3661 (2018)
  62. Sirtuin Acetylation and Deacetylation: a Complex Paradigm in Neurodegenerative Disease. Khan H, Tiwari P, Kaur A, Singh TG. Mol Neurobiol 58 3903-3917 (2021)
  63. Structural Basis for Activation of Human Sirtuin 6 by Fluvastatin. You W, Steegborn C. ACS Med Chem Lett 11 2285-2289 (2020)
  64. Studies of the Binding of Modest Modulators of the Human Enzyme, Sirtuin 6, by STD NMR. Bolívar BE, Welch JT. Chembiochem 18 931-940 (2017)
  65. CRISPR/Cas9-mediated Knockout of SIRT6 Imparts Remarkable Antiproliferative Response in Human Melanoma Cells in vitro and in vivo. Garcia-Peterson LM, Ndiaye MA, Chhabra G, Singh CK, Guzmán-Pérez G, Iczkowski KA, Ahmad N. Photochem Photobiol 96 1314-1320 (2020)
  66. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance. Gertman O, Omer D, Hendler A, Stein D, Onn L, Khukhin Y, Portillo M, Zarivach R, Cohen HY, Toiber D, Aharoni A. Sci Rep 8 3538 (2018)
  67. Roles of SIRT6 in kidney disease: a novel therapeutic target. Yang X, Feng J, Liang W, Zhu Z, Chen Z, Hu J, Yang D, Ding G. Cell Mol Life Sci 79 53 (2021)
  68. SIRT7 promotes chromosome synapsis during prophase I of female meiosis. Vazquez BN, Blengini CS, Hernandez Y, Serrano L, Schindler K. Chromosoma 128 369-383 (2019)
  69. The Lifespan Extension Ability of Nicotinic Acid Depends on Whether the Intracellular NAD+ Level Is Lower than the Sirtuin-Saturating Concentrations. Yang NC, Cho YH, Lee I. Int J Mol Sci 21 E142 (2019)
  70. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Front Cell Dev Biol 9 655552 (2021)
  71. Reconstitution of Mammalian Enzymatic Deacylation Reactions in Live Bacteria Using Native Acylated Substrates. Avrahami EM, Levi S, Zajfman E, Regev C, Ben-David O, Arbely E. ACS Synth Biol 7 2348-2354 (2018)
  72. SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside. Mukherjee S, Mo J, Paolella LM, Perry CE, Toth J, Hugo MM, Chu Q, Tong Q, Chellappa K, Baur JA. JCI Insight 6 147193 (2021)
  73. Sirtuin 6 (SIRT6) Activity Assays. Rahnasto-Rilla M, Lahtela-Kakkonen M, Moaddel R. Methods Mol Biol 1436 259-269 (2016)
  74. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [18F]-2-Fluorobenzoylaminohexanoicanilide. Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. J Med Chem 61 7116-7130 (2018)
  75. SIRT6 Through the Brain Evolution, Development, and Aging. Garcia-Venzor A, Toiber D. Front Aging Neurosci 13 747989 (2021)
  76. Sequence variants in the bovine silent information regulator 6, their linkage and their associations with body measurements and carcass quality traits in Qinchuan cattle. Gui L, Jiang B, Zhang Y, Zan L. Gene 559 16-21 (2015)
  77. Sirtuin 6 promotes eosinophil differentiation by activating GATA-1 transcription factor. Bang IH, Park D, Lee Y, Cho H, Park BH, Bae EJ. Aging Cell 20 e13418 (2021)
  78. YAF2-Mediated YY1-Sirtuin6 Interactions Responsible for Mitochondrial Downregulation in Aging Tunicates. Kawamura K, Higuchi T, Fujiwara S. Mol Cell Biol 41 e0004721 (2021)
  79. C. elegans sirtuin SIR-2.4 and its mammalian homolog SIRT6 in stress response. Jedrusik-Bode M. Worm 3 e29102 (2014)
  80. Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme. Yu J, Haldar M, Mallik S, Srivastava DK. PLoS One 11 e0152467 (2016)
  81. Structural Insight into the Interactions between Structurally Similar Inhibitors and SIRT6. Zhao S, Zhu YY, Wang XY, Liu YS, Sun YX, Zhao QJ, Li HY. Int J Mol Sci 21 E2601 (2020)
  82. A Novel Substrate Radiotracer for Molecular Imaging of SIRT2 Expression and Activity with Positron Emission Tomography. Bonomi RE, Laws M, Popov V, Kamal S, Potukutchi S, Shavrin A, Lu X, Turkman N, Liu RS, Mangner T, Gelovani JG. Mol Imaging Biol 20 594-604 (2018)
  83. Design, Synthesis, and Biological Evaluation of 8-Mercapto-3,7-Dihydro-1H-Purine-2,6-Diones as Potent Inhibitors of SIRT1, SIRT2, SIRT3, and SIRT5. Han H, Li C, Li M, Yang L, Zhao S, Wang Z, Liu H, Liu D. Molecules 25 E2755 (2020)
  84. Multi-Targeted Molecular Docking, Pharmacokinetics, and Drug-Likeness Evaluation of Okra-Derived Ligand Abscisic Acid Targeting Signaling Proteins Involved in the Development of Diabetes. Ashraf SA, Elkhalifa AEO, Mehmood K, Adnan M, Khan MA, Eltoum NE, Krishnan A, Baig MS. Molecules 26 5957 (2021)
  85. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. Timucin AC, Basaga H. PLoS One 11 e0161494 (2016)
  86. SIRT2 inhibition protects against cardiac hypertrophy and ischemic injury. Yang X, Chang HC, Tatekoshi Y, Mahmoodzadeh A, Balibegloo M, Najafi Z, Wu R, Chen C, Sato T, Shapiro J, Ardehali H. Elife 12 e85571 (2023)
  87. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Raj S, Dsouza LA, Singh SP, Kanwal A. Front Pharmacol 11 598326 (2020)
  88. A non-synonymous single nucleotide polymorphism in SIRT6 predicts neurological severity in Friedreich ataxia. Rodden LN, Rummey C, Dong YN, Lagedrost S, Regner S, Brocht A, Bushara K, Delatycki MB, Gomez CM, Mathews K, Murray S, Perlman S, Ravina B, Subramony SH, Wilmot G, Zesiewicz T, Bolotta A, Domissy A, Jespersen C, Ji B, Soragni E, Gottesfeld JM, Lynch DR. Front Mol Biosci 9 933788 (2022)
  89. AF9 targets acetyl-modified STAT6 to diminish purine metabolism and accelerate cell apoptosis during metastasis. Shao J, Shi T, Chen L, Wang X, Yu H, Feng N, Wang X. Cell Death Differ 30 1695-1709 (2023)
  90. Activation of SIRT6 Deacetylation by DNA Strand Breaks. Kang W, Hamza A, Curry AM, Korade E, Donu D, Cen Y. ACS Omega 8 41310-41320 (2023)
  91. Deciphering the Allosteric Activation Mechanism of SIRT6 Using Molecular Dynamics Simulations. Zhao Z, Du J, Du Y, Gao Y, Yu M, Zhang Y, Fang H, Hou X. J Chem Inf Model 63 5896-5902 (2023)
  92. Structural Basis of Sirtuin 6-Catalyzed Nucleosome Deacetylation. Wang ZA, Markert JW, Whedon SD, Yapa Abeywardana M, Lee K, Jiang H, Suarez C, Lin H, Farnung L, Cole PA. J Am Chem Soc 145 6811-6822 (2023)