3mg0 Citations

Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit.

Abstract

The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome based [corrected] on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the beta5 (chymotrypsin-like) site over the beta1 (caspase-like) and beta2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC50 values for the human 20S beta5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NFkappaB (nuclear factor kappaB) in response to TNF-alpha (tumour necrosis factor-alpha) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the beta5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the beta5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.

Reviews - 3mg0 mentioned but not cited (1)

  1. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview. Guedes RA, Serra P, Salvador JA, Guedes RC. Molecules 21 E927 (2016)

Articles - 3mg0 mentioned but not cited (3)

  1. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M, Bruzzese FJ, Barrett C, Liu JX, Soucy TA, Sappal DS, Bump N, Olhava EJ, Fleming P, Dick LR, Tsu C, Sintchak MD, Blank JL. Biochem J 430 461-476 (2010)
  2. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium. Pereira AR, Kale AJ, Fenley AT, Byrum T, Debonsi HM, Gilson MK, Valeriote FA, Moore BS, Gerwick WH. Chembiochem 13 810-817 (2012)
  3. New Insights into the Roles of Mg in Improving the Rate Capability and Cycling Stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for Sodium-Ion Batteries. Zhang C, Gao R, Zheng L, Hao Y, Liu X. ACS Appl Mater Interfaces 10 10819-10827 (2018)


Reviews citing this publication (21)

  1. Proteasome inhibitors: an expanding army attacking a unique target. Kisselev AF, van der Linden WA, Overkleeft HS. Chem Biol 19 99-115 (2012)
  2. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Drug Resist Updat 18 18-35 (2015)
  3. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Huber EM, Groll M. Angew Chem Int Ed Engl 51 8708-8720 (2012)
  4. Inhibitors of the immunoproteasome: current status and future directions. Miller Z, Ao L, Kim KB, Lee W. Curr Pharm Des 19 4140-4151 (2013)
  5. Next-generation proteasome inhibitors for cancer therapy. Park JE, Miller Z, Jun Y, Lee W, Kim KB. Transl Res 198 1-16 (2018)
  6. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? Aminake MN, Arndt HD, Pradel G. Int J Parasitol Drugs Drug Resist 2 1-10 (2012)
  7. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Gräwert MA, Groll M. Chem Commun (Camb) 48 1364-1378 (2012)
  8. Regulation of Protein Degradation by Proteasomes in Cancer. Jang HH. J Cancer Prev 23 153-161 (2018)
  9. Emerging role of immunoproteasomes in pathophysiology. Kaur G, Batra S. Immunol Cell Biol 94 812-820 (2016)
  10. Peptide-based proteasome inhibitors in anticancer drug design. Micale N, Scarbaci K, Troiano V, Ettari R, Grasso S, Zappalà M. Med Res Rev 34 1001-1069 (2014)
  11. Applied techniques for mining natural proteasome inhibitors. Stein ML, Groll M. Biochim Biophys Acta 1843 26-38 (2014)
  12. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Angew Chem Int Ed Engl 58 3300-3345 (2019)
  13. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Antioxid Redox Signal 21 2419-2443 (2014)
  14. Canonical and new generation anticancer drugs also target energy metabolism. Rodríguez-Enríquez S, Gallardo-Pérez JC, Hernández-Reséndiz I, Marín-Hernández A, Pacheco-Velázquez SC, López-Ramírez SY, Rumjanek FD, Moreno-Sánchez R. Arch Toxicol 88 1327-1350 (2014)
  15. Site-Specific Proteasome Inhibitors. Kisselev AF. Biomolecules 12 54 (2021)
  16. Structure-Driven Developments of 26S Proteasome Inhibitors. Śledź P, Baumeister W. Annu Rev Pharmacol Toxicol 56 191-209 (2016)
  17. A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Huber EM, Groll M. Cells 10 1929 (2021)
  18. Recent advances in proteasome inhibitor discovery. Pevzner Y, Metcalf R, Kantor M, Sagaro D, Daniel K. Expert Opin Drug Discov 8 537-568 (2013)
  19. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Muli CS, Tian W, Trader DJ. Chembiochem 20 1739-1753 (2019)
  20. Pharmacophore modeling technique applied for the discovery of proteasome inhibitors. Pautasso C, Troia R, Genuardi M, Palumbo A. Expert Opin Drug Discov 9 931-943 (2014)
  21. Proteasome Inhibitors in Cancer Therapy and their Relation to Redox Regulation. Sari G, Okat Z, Sahin A, Karademir B. Curr Pharm Des 24 5252-5267 (2018)

Articles citing this publication (59)

  1. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M. Cell 148 727-738 (2012)
  2. Advanced-glycation-end-product-induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1. Grimm S, Ott C, Hörlacher M, Weber D, Höhn A, Grune T. Biochem J 448 127-139 (2012)
  3. Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Niewerth D, Kaspers GJ, Assaraf YG, van Meerloo J, Kirk CJ, Anderl J, Blank JL, van de Ven PM, Zweegman S, Jansen G, Cloos J. J Hematol Oncol 7 7 (2014)
  4. Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice. Sula Karreci E, Fan H, Uehara M, Mihali AB, Singh PK, Kurdi AT, Solhjou Z, Riella LV, Ghobrial I, Laragione T, Routray S, Assaker JP, Wang R, Sukenick G, Shi L, Barrat FJ, Nathan CF, Lin G, Azzi J. Proc Natl Acad Sci U S A 113 E8425-E8432 (2016)
  5. N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C. J Am Chem Soc 135 9968-9971 (2013)
  6. Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. Basler M, Lindstrom MM, LaStant JJ, Bradshaw JM, Owens TD, Schmidt C, Maurits E, Tsu C, Overkleeft HS, Kirk CJ, Langrish CL, Groettrup M. EMBO Rep 19 e46512 (2018)
  7. Hydroxyureas as noncovalent proteasome inhibitors. Gallastegui N, Beck P, Arciniega M, Huber R, Hillebrand S, Groll M. Angew Chem Int Ed Engl 51 247-249 (2012)
  8. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. Xie SC, Gillett DL, Spillman NJ, Tsu C, Luth MR, Ottilie S, Duffy S, Gould AE, Hales P, Seager BA, Charron CL, Bruzzese F, Yang X, Zhao X, Huang SC, Hutton CA, Burrows JN, Winzeler EA, Avery VM, Dick LR, Tilley L. J Med Chem 61 10053-10066 (2018)
  9. Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome. Fan H, Angelo NG, Warren JD, Nathan CF, Lin G. ACS Med Chem Lett 5 405-410 (2014)
  10. Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. Yoo E, Stokes BH, de Jong H, Vanaerschot M, Kumar T, Lawrence N, Njoroge M, Garcia A, Van der Westhuyzen R, Momper JD, Ng CL, Fidock DA, Bogyo M. J Am Chem Soc 140 11424-11437 (2018)
  11. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Santos RLA, Bai L, Singh PK, Murakami N, Fan H, Zhan W, Zhu Y, Jiang X, Zhang K, Assker JP, Nathan CF, Li H, Azzi J, Lin G. Nat Commun 8 1692 (2017)
  12. Why the structure but not the activity of the immunoproteasome subunit low molecular mass polypeptide 2 rescues antigen presentation. Basler M, Lauer C, Moebius J, Weber R, Przybylski M, Kisselev AF, Tsu C, Groettrup M. J Immunol 189 1868-1877 (2012)
  13. Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome. Li H, Tsu C, Blackburn C, Li G, Hales P, Dick L, Bogyo M. J Am Chem Soc 136 13562-13565 (2014)
  14. Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Niewerth D, van Meerloo J, Jansen G, Assaraf YG, Hendrickx TC, Kirk CJ, Anderl JL, Zweegman S, Kaspers GJ, Cloos J. Biochem Pharmacol 89 43-51 (2014)
  15. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells. Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, Bhatt ML, Mishra DP. Oncotarget 6 43310-43325 (2015)
  16. Discovery of the First-in-Class Dual Histone Deacetylase-Proteasome Inhibitor. Bhatia S, Krieger V, Groll M, Osko JD, Reßing N, Ahlert H, Borkhardt A, Kurz T, Christianson DW, Hauer J, Hansen FK. J Med Chem 61 10299-10309 (2018)
  17. Immunoproteasome β5i-Selective Dipeptidomimetic Inhibitors. Singh PK, Fan H, Jiang X, Shi L, Nathan CF, Lin G. ChemMedChem 11 2127-2131 (2016)
  18. Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression. Javitt A, Barnea E, Kramer MP, Wolf-Levy H, Levin Y, Admon A, Merbl Y. Front Immunol 10 141 (2019)
  19. Amelioration of autoimmunity with an inhibitor selectively targeting all active centres of the immunoproteasome. Basler M, Maurits E, de Bruin G, Koerner J, Overkleeft HS, Groettrup M. Br J Pharmacol 175 38-52 (2018)
  20. Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Niewerth D, Kaspers GJ, Jansen G, van Meerloo J, Zweegman S, Jenkins G, Whitlock JA, Hunger SP, Lu X, Alonzo TA, van de Ven PM, Horton TM, Cloos J. J Hematol Oncol 9 82 (2016)
  21. A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit β5i. Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M. EMBO J 35 2602-2613 (2016)
  22. An inhibitor of proteasome β2 sites sensitizes myeloma cells to immunoproteasome inhibitors. Downey-Kopyscinski S, Daily EW, Gautier M, Bhatt A, Florea BI, Mitsiades CS, Richardson PG, Driessen C, Overkleeft HS, Kisselev AF. Blood Adv 2 2443-2451 (2018)
  23. Discovery of Highly Selective Inhibitors of the Immunoproteasome Low Molecular Mass Polypeptide 2 (LMP2) Subunit. Johnson HWB, Anderl JL, Bradley EK, Bui J, Jones J, Arastu-Kapur S, Kelly LM, Lowe E, Moebius DC, Muchamuel T, Kirk C, Wang Z, McMinn D. ACS Med Chem Lett 8 413-417 (2017)
  24. N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide (6b): a novel anticancer glycyrrhetinic acid derivative that targets the proteasome and displays anti-kinase activity. Lallemand B, Chaix F, Bury M, Bruyère C, Ghostin J, Becker JP, Delporte C, Gelbcke M, Mathieu V, Dubois J, Prévost M, Jabin I, Kiss R. J Med Chem 54 6501-6513 (2011)
  25. Oxadiazole-isopropylamides as potent and noncovalent proteasome inhibitors. Ozcan S, Kazi A, Marsilio F, Fang B, Guida WC, Koomen J, Lawrence HR, Sebti SM. J Med Chem 56 3783-3805 (2013)
  26. Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine. Dubiella C, Baur R, Cui H, Huber EM, Groll M. Angew Chem Int Ed Engl 54 15888-15891 (2015)
  27. Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome. Hsu HC, Singh PK, Fan H, Wang R, Sukenick G, Nathan C, Lin G, Li H. Biochemistry 56 324-333 (2017)
  28. Development of a Highly Selective Plasmodium falciparum Proteasome Inhibitor with Anti-malaria Activity in Humanized Mice. Zhan W, Zhang H, Ginn J, Leung A, Liu YJ, Michino M, Toita A, Okamoto R, Wong TT, Imaeda T, Hara R, Yukawa T, Chelebieva S, Tumwebaze PK, Lafuente-Monasterio MJ, Martinez-Martinez MS, Vendome J, Beuming T, Sato K, Aso K, Rosenthal PJ, Cooper RA, Meinke PT, Nathan CF, Kirkman LA, Lin G. Angew Chem Int Ed Engl 60 9279-9283 (2021)
  29. Vitamin D analogue TX 527 down-regulates the NF-κB pathway and controls the proliferation of endothelial cells transformed by Kaposi sarcoma herpesvirus. González-Pardo V, Verstuyf A, Boland R, Russo de Boland A. Br J Pharmacol 169 1635-1645 (2013)
  30. Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Xie SC, Metcalfe RD, Mizutani H, Puhalovich T, Hanssen E, Morton CJ, Du Y, Dogovski C, Huang SC, Ciavarri J, Hales P, Griffin RJ, Cohen LH, Chuang BC, Wittlin S, Deni I, Yeo T, Ward KE, Barry DC, Liu B, Gillett DL, Crespo-Fernandez BF, Ottilie S, Mittal N, Churchyard A, Ferguson D, Aguiar ACC, Guido RVC, Baum J, Hanson KK, Winzeler EA, Gamo FJ, Fidock DA, Baud D, Parker MW, Brand S, Dick LR, Griffin MDW, Gould AE, Tilley L. Proc Natl Acad Sci U S A 118 e2107213118 (2021)
  31. A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor. Hasegawa M, Yasuda Y, Tanaka M, Nakata K, Umeda E, Wang Y, Watanabe C, Uetake S, Kunoh T, Shionyu M, Sasaki R, Shiina I, Mizukami T. Eur J Med Chem 71 290-305 (2014)
  32. Inhibition of autophagy by autophagic inhibitors enhances apoptosis induced by bortezomib in non-small cell lung cancer cells. Wu G, Li H, Ji Z, Jiang X, Lei Y, Sun M. Biotechnol Lett 36 1171-1178 (2014)
  33. PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer. Park JE, Ao L, Miller Z, Kim K, Wu Y, Jang ER, Lee EY, Kim KB, Lee W. PLoS One 8 e73732 (2013)
  34. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. J Biol Chem 294 19604-19615 (2019)
  35. Discovery of PI-1840, a novel noncovalent and rapidly reversible proteasome inhibitor with anti-tumor activity. Kazi A, Ozcan S, Tecleab A, Sun Y, Lawrence HR, Sebti SM. J Biol Chem 289 11906-11915 (2014)
  36. Modulation of proteasome machinery by natural and synthetic analogues of the marine bioactive compound petrosaspongiolide M. Margarucci L, Tosco A, De Simone R, Riccio R, Monti MC, Casapullo A. Chembiochem 13 982-986 (2012)
  37. Structure-Activity Relationships of Noncovalent Immunoproteasome β5i-Selective Dipeptides. Zhan W, Singh PK, Ban Y, Qing X, Ah Kioon MD, Fan H, Zhao Q, Wang R, Sukenick G, Salmon J, Warren JD, Ma X, Barrat FJ, Nathan CF, Lin G. J Med Chem 63 13103-13123 (2020)
  38. Biological Evaluation of Naproxen-Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Moreira R, Jervis PJ, Carvalho A, Ferreira PMT, Martins JA, Valentão P, Andrade PB, Perreira DM. Pharmaceutics 12 E122 (2020)
  39. Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual screening. Di Giovanni C, Ettari R, Sarno S, Rotondo A, Bitto A, Squadrito F, Altavilla D, Schirmeister T, Novellino E, Grasso S, Zappalà M, Lavecchia A. Eur J Med Chem 121 578-591 (2016)
  40. Inhibition of human and yeast 20S proteasome by analogues of trypsin inhibitor SFTI-1. Dębowski D, Pikuła M, Lubos M, Langa P, Trzonkowski P, Lesner A, Łęgowska A, Rolka K. PLoS One 9 e89465 (2014)
  41. Antiproliferative effects of Bortezomib in endothelial cells transformed by viral G protein-coupled receptor associated to Kaposi's sarcoma. Suares A, Mori Sequeiros Garcia M, Paz C, González-Pardo V. Cell Signal 32 124-132 (2017)
  42. Blockade of the malignant phenotype by β-subunit selective noncovalent inhibition of immuno- and constitutive proteasomes. Villoutreix BO, Khatib AM, Cheng Y, Miteva MA, Maréchal X, Vidal J, Reboud-Ravaux M. Oncotarget 8 10437-10449 (2017)
  43. C1 and N5 derivatives of cerpegin: synthesis of a new series based on structure-activity relationships to optimize their inhibitory effect on 20S proteasome. Hovhannisyan A, Pham TH, Bouvier D, Qin L, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. Bioorg Med Chem Lett 23 2696-2703 (2013)
  44. Discovery of new Mycobacterium tuberculosis proteasome inhibitors using a knowledge-based computational screening approach. Mehra R, Chib R, Munagala G, Yempalla KR, Khan IA, Singh PP, Khan FG, Nargotra A. Mol Divers 19 1003-1019 (2015)
  45. Proteasome stress sensitizes malignant pleural mesothelioma cells to bortezomib-induced apoptosis. Cerruti F, Jocollè G, Salio C, Oliva L, Paglietti L, Alessandria B, Mioletti S, Donati G, Numico G, Cenci S, Cascio P. Sci Rep 7 17626 (2017)
  46. Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Koroleva ON, Pham TH, Bouvier D, Dufau L, Qin L, Reboud-Ravaux M, Ivanov AA, Zhuze AL, Gromova ES, Bouvier-Durand M. Biochimie 108 94-100 (2015)
  47. Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Guedes RA, Aniceto N, Andrade MAP, Salvador JAR, Guedes RC. Int J Mol Sci 20 E5326 (2019)
  48. New C(4)- and C(1)-derivatives of furo[3,4-c]pyridine-3-ones and related compounds: evidence for site-specific inhibition of the constitutive proteasome and its immunoisoform. Hovhannisyan A, Pham TH, Bouvier D, Piroyan A, Dufau L, Qin L, Cheng Y, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. Bioorg Med Chem Lett 24 1571-1580 (2014)
  49. Discovery of novel non-covalent inhibitors selective to the β5-subunit of the human 20S proteasome. Xu K, Wang K, Yang Y, Yan DA, Huang L, Chen CH, Xiao Z. Eur J Med Chem 98 61-68 (2015)
  50. Elucidating the catalytic subunit composition of distinct proteasome subtypes: a crosslinking approach employing bifunctional activity-based probes. Cornish Carmony K, Sharma LK, Lee DM, Park JE, Lee W, Kim KB. Chembiochem 16 284-292 (2015)
  51. Construction of a recombinant lentivirus-mediated shRNA expression vector targeting the human PSMD10 gene and validation of RNAi efficiency in RPMI‑8226 multiple myeloma cells. Du S, Qin W, Leng H, Chen Z, Zhang T. Oncol Rep 38 809-818 (2017)
  52. Design, Synthesis, and Optimization of Macrocyclic Peptides as Species-Selective Antimalaria Proteasome Inhibitors. Zhang H, Ginn J, Zhan W, Liu YJ, Leung A, Toita A, Okamoto R, Wong TT, Imaeda T, Hara R, Yukawa T, Michino M, Vendome J, Beuming T, Sato K, Aso K, Meinke PT, Nathan CF, Kirkman LA, Lin G. J Med Chem 65 9350-9375 (2022)
  53. Design, synthesis and biological evaluation of novel non-covalent piperidine-containing peptidyl proteasome inhibitors. Zhang J, Gao L, Xi J, Sheng L, Zhao Y, Xu L, Shao Y, Liu S, Zhuang R, Zhou Y, Li J. Bioorg Med Chem 24 6206-6214 (2016)
  54. Exploration of novel piperazine or piperidine constructed non-covalent peptidyl derivatives as proteasome inhibitors. Zhuang R, Gao L, Lv X, Xi J, Sheng L, Zhao Y, He R, Hu X, Shao Y, Pan X, Liu S, Huang W, Zhou Y, Li J, Zhang J. Eur J Med Chem 126 1056-1070 (2017)
  55. Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Besse A, Kraus M, Mendez-Lopez M, Maurits E, Overkleeft HS, Driessen C, Besse L. Cells 11 838 (2022)
  56. Structure-Based Design of Fluorogenic Substrates Selective for Human Proteasome Subunits. Maurits E, Degeling CG, Kisselev AF, Florea BI, Overkleeft HS. Chembiochem 21 3220-3224 (2020)
  57. Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Rawson S, Walsh RM, Velez B, Schnell HM, Jiao F, Blickling M, Ang J, Bhanu MK, Huang L, Hanna J. Nat Struct Mol Biol 29 791-800 (2022)
  58. A yeast selection system for the detection of proteasomal activation. Zhao W, Bachhav B, McWhite C, Segatori L. Protein Eng Des Sel 31 437-445 (2018)
  59. New Scaffolds of Proteasome Inhibitors: Boosting Anticancer Potential by Exploiting the Synergy of In Silico and In Vitro Methodologies. Guedes RA, Grilo JH, Carvalho AN, Fernandes PMP, Ressurreição AS, Brito V, Santos AO, Silvestre S, Gallerani E, Gama MJ, Gavioli R, Salvador JAR, Guedes RC. Pharmaceuticals (Basel) 16 1096 (2023)