3ltg Citations

Structural basis for negative cooperativity in growth factor binding to an EGF receptor.

Cell 142 568-79 (2010)
Cited: 116 times
EuropePMC logo PMID: 20723758

Abstract

Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the "high-affinity" and "low-affinity" classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

Reviews - 3ltg mentioned but not cited (3)

  1. The EGFR family: not so prototypical receptor tyrosine kinases. Lemmon MA, Schlessinger J, Ferguson KM. Cold Spring Harb Perspect Biol 6 a020768 (2014)
  2. A structural perspective on the regulation of the epidermal growth factor receptor. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. Annu Rev Biochem 84 739-764 (2015)
  3. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Ferguson KM, Hu C, Lemmon MA. Protein Sci 29 1331-1344 (2020)

Articles - 3ltg mentioned but not cited (6)

  1. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Alvarado D, Klein DE, Lemmon MA. Cell 142 568-579 (2010)
  2. Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Tynan CJ, Roberts SK, Rolfe DJ, Clarke DT, Loeffler HH, Kästner J, Winn MD, Parker PJ, Martin-Fernandez ML. Mol Cell Biol 31 2241-2252 (2011)
  3. Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Diwanji D, Trenker R, Thaker TM, Wang F, Agard DA, Verba KA, Jura N. Nature 600 339-343 (2021)
  4. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking. Chakravarty D, McElfresh GW, Kundrotas PJ, Vakser IA. Proteins 88 1070-1081 (2020)
  5. Molecular dynamics simulations of transitions for ECD epidermal growth factor receptors show key differences between human and drosophila forms of the receptors. Perilla JR, Leahy DJ, Woolf TB. Proteins 81 1113-1126 (2013)
  6. Structure and dynamics of the EGFR/HER2 heterodimer. Bai X, Sun P, Wang X, Long C, Liao S, Dang S, Zhuang S, Du Y, Zhang X, Li N, He K, Zhang Z. Cell Discov 9 18 (2023)


Reviews citing this publication (24)

  1. The ErbB/HER family of protein-tyrosine kinases and cancer. Roskoski R. Pharmacol Res 79 34-74 (2014)
  2. Receptor tyrosine kinases: legacy of the first two decades. Schlessinger J. Cold Spring Harb Perspect Biol 6 a008912 (2014)
  3. Contact inhibition (of proliferation) redux. McClatchey AI, Yap AS. Curr Opin Cell Biol 24 685-694 (2012)
  4. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Zhang Q, Bhattacharya S, Andersen ME. Open Biol 3 130031 (2013)
  5. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis. Li J, Tian H, Yang J, Gong Z. DNA Cell Biol 35 459-470 (2016)
  6. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Purba ER, Saita EI, Maruyama IN. Cells 6 E13 (2017)
  7. Computational design of peptide ligands. Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J. Trends Biotechnol 29 231-239 (2011)
  8. Regulation of the catalytic activity of the EGF receptor. Endres NF, Engel K, Das R, Kovacs E, Kuriyan J. Curr Opin Struct Biol 21 777-784 (2011)
  9. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Sugiyama MG, Fairn GD, Antonescu CN. Front Cell Dev Biol 7 70 (2019)
  10. Understanding cytokine and growth factor receptor activation mechanisms. Atanasova M, Whitty A. Crit Rev Biochem Mol Biol 47 502-530 (2012)
  11. Physical-chemical principles underlying RTK activation, and their implications for human disease. He L, Hristova K. Biochim Biophys Acta 1818 995-1005 (2012)
  12. Putting together structures of epidermal growth factor receptors. Bessman NJ, Freed DM, Lemmon MA. Curr Opin Struct Biol 29 95-101 (2014)
  13. Characterization of membrane protein function by solid-state NMR spectroscopy. Baker LA, Baldus M. Curr Opin Struct Biol 27 48-55 (2014)
  14. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Grigoryan G, Moore DT, DeGrado WF. Annu Rev Biochem 80 211-237 (2011)
  15. Emerging Allosteric Mechanism of EGFR Activation in Physiological and Pathological Contexts. Tsai CJ, Nussinov R. Biophys J 117 5-13 (2019)
  16. Spatial regulation of epidermal growth factor receptor signaling by endocytosis. Ceresa BP. Int J Mol Sci 14 72-87 (2012)
  17. A tale of the epidermal growth factor receptor: The quest for structural resolution on cells. Tynan CJ, Lo Schiavo V, Zanetti-Domingues L, Needham SR, Roberts SK, Hirsch M, Rolfe DJ, Korovesis D, Clarke DT, Martin-Fernandez ML. Methods 95 86-93 (2016)
  18. Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors. Valley CC, Lewis AK, Sachs JN. Biochim Biophys Acta Biomembr 1859 1398-1416 (2017)
  19. Asymmetric perturbations of signalling oligomers. Maksay G, Tőke O. Prog Biophys Mol Biol 114 153-169 (2014)
  20. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Clarke DT, Martin-Fernandez ML. Methods Protoc 2 E12 (2019)
  21. It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Kovacs T, Zakany F, Nagy P. Cancers (Basel) 14 944 (2022)
  22. The regulatory role of the juxtamembrane region in the activity of the epidermal growth factor receptor. Boran AD. Biochem Soc Trans 40 195-199 (2012)
  23. Imaging strategies for receptor tyrosine kinase dimers in living cells. Zhang X, Yin J, Pan W, Li Y, Li N, Tang B. Anal Bioanal Chem 415 67-82 (2023)
  24. [Dimerization of heregulin receptor as observed using single-molecule imaging in living cells]. Sako Y. Nihon Yakurigaku Zasshi 141 240-244 (2013)

Articles citing this publication (83)

  1. Architecture and membrane interactions of the EGF receptor. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE. Cell 152 557-569 (2013)
  2. Conformational coupling across the plasma membrane in activation of the EGF receptor. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE, Groves JT, Kuriyan J. Cell 152 543-556 (2013)
  3. Regulation of human EGF receptor by lipids. Coskun Ü, Grzybek M, Drechsel D, Simons K. Proc Natl Acad Sci U S A 108 9044-9048 (2011)
  4. ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, van Bergen en Henegouwen PM, Wilson BS, Lidke DS. Nat Struct Mol Biol 18 1244-1249 (2011)
  5. EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. Cell 171 683-695.e18 (2017)
  6. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. Huang Y, Bharill S, Karandur D, Peterson SM, Marita M, Shi X, Kaliszewski MJ, Smith AW, Isacoff EY, Kuriyan J. Elife 5 e14107 (2016)
  7. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. Liao HW, Hsu JM, Xia W, Wang HL, Wang YN, Chang WC, Arold ST, Chou CK, Tsou PH, Yamaguchi H, Fang YF, Lee HJ, Lee HH, Tai SK, Yang MH, Morelli MP, Sen M, Ladbury JE, Chen CH, Grandis JR, Kopetz S, Hung MC. J Clin Invest 125 4529-4543 (2015)
  8. A single ligand is sufficient to activate EGFR dimers. Liu P, Cleveland TE, Bouyain S, Byrne PO, Longo PA, Leahy DJ. Proc Natl Acad Sci U S A 109 10861-10866 (2012)
  9. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Maruyama IN. Cells 3 304-330 (2014)
  10. Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations. Littlefield P, Liu L, Mysore V, Shan Y, Shaw DE, Jura N. Sci Signal 7 ra114 (2014)
  11. High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways. Krall JA, Beyer EM, MacBeath G. PLoS One 6 e15945 (2011)
  12. Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Chakraborty S, Li L, Puliyappadamba VT, Guo G, Hatanpaa KJ, Mickey B, Souza RF, Vo P, Herz J, Chen MR, Boothman DA, Pandita TK, Wang DH, Sen GC, Habib AA. Nat Commun 5 5811 (2014)
  13. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. De Meyts P. Bioessays 37 389-397 (2015)
  14. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Valley CC, Arndt-Jovin DJ, Karedla N, Steinkamp MP, Chizhik AI, Hlavacek WS, Wilson BS, Lidke KA, Lidke DS. Mol Biol Cell 26 4087-4099 (2015)
  15. Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Cell Rep 9 1306-1317 (2014)
  16. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Gutmann T, Schäfer IB, Poojari C, Brankatschk B, Vattulainen I, Strauss M, Coskun Ü. J Cell Biol 219 e201907210 (2020)
  17. An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. Moore JO, Hendrickson WA. Structure 20 729-741 (2012)
  18. The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Zanetti-Domingues LC, Korovesis D, Needham SR, Tynan CJ, Sagawa S, Roberts SK, Kuzmanic A, Ortiz-Zapater E, Jain P, Roovers RC, Lajevardipour A, van Bergen En Henegouwen PMP, Santis G, Clayton AHA, Clarke DT, Gervasio FL, Shan Y, Shaw DE, Rolfe DJ, Parker PJ, Martin-Fernandez ML. Nat Commun 9 4325 (2018)
  19. Glycine dimerization motif in the N-terminal transmembrane domain of the high density lipoprotein receptor SR-BI required for normal receptor oligomerization and lipid transport. Gaidukov L, Nager AR, Xu S, Penman M, Krieger M. J Biol Chem 286 18452-18464 (2011)
  20. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. Elife 2 e00708 (2013)
  21. Revised model of calcium and magnesium binding to the bacterial cell wall. Thomas KJ, Rice CV. Biometals 27 1361-1370 (2014)
  22. Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study. Zeng Z, Patel J, Lee SH, McCallum M, Tyagi A, Yan M, Shea KJ. J Am Chem Soc 134 2681-2690 (2012)
  23. Molecular determinants of epidermal growth factor binding: a molecular dynamics study. Sanders JM, Wampole ME, Thakur ML, Wickstrom E. PLoS One 8 e54136 (2013)
  24. Activating ERBB4 mutations in non-small cell lung cancer. Kurppa KJ, Denessiouk K, Johnson MS, Elenius K. Oncogene 35 1283-1291 (2016)
  25. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. Fortian A, Sorkin A. J Cell Sci 127 432-444 (2014)
  26. Asymmetry in the homodimeric ABC transporter MsbA recognized by a DARPin. Mittal A, Böhm S, Grütter MG, Bordignon E, Seeger MA. J Biol Chem 287 20395-20406 (2012)
  27. Molecular architecture of the ErbB2 extracellular domain homodimer. Hu S, Sun Y, Meng Y, Wang X, Yang W, Fu W, Guo H, Qian W, Hou S, Li B, Rao Z, Lou Z, Guo Y. Oncotarget 6 1695-1706 (2015)
  28. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. Gourinchas G, Heintz U, Winkler A. Elife 7 e34815 (2018)
  29. A mathematical model for BRASSINOSTEROID INSENSITIVE1-mediated signaling in root growth and hypocotyl elongation. van Esse GW, van Mourik S, Stigter H, ten Hove CA, Molenaar J, de Vries SC. Plant Physiol 160 523-532 (2012)
  30. Dynamic conformational transitions of the EGF receptor in living mammalian cells determined by FRET and fluorescence lifetime imaging microscopy. Ziomkiewicz I, Loman A, Klement R, Fritsch C, Klymchenko AS, Bunt G, Jovin TM, Arndt-Jovin DJ. Cytometry A 83 794-805 (2013)
  31. Dynamically varying interactions between heregulin and ErbB proteins detected by single-molecule analysis in living cells. Hiroshima M, Saeki Y, Okada-Hatakeyama M, Sako Y. Proc Natl Acad Sci U S A 109 13984-13989 (2012)
  32. Inhibition of ErbB3 by a monoclonal antibody that locks the extracellular domain in an inactive configuration. Lee S, Greenlee EB, Amick JR, Ligon GF, Lillquist JS, Natoli EJ, Hadari Y, Alvarado D, Schlessinger J. Proc Natl Acad Sci U S A 112 13225-13230 (2015)
  33. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Hasegawa Y, Takahashi M, Ariki S, Asakawa D, Tajiri M, Wada Y, Yamaguchi Y, Nishitani C, Takamiya R, Saito A, Uehara Y, Hashimoto J, Kurimura Y, Takahashi H, Kuroki Y. Oncogene 34 838-845 (2015)
  34. Effect of phosphorylation on EGFR dimer stability probed by single-molecule dynamics and FRET/FLIM. Coban O, Zanetti-Dominguez LC, Matthews DR, Rolfe DJ, Weitsman G, Barber PR, Barbeau J, Devauges V, Kampmeier F, Winn M, Vojnovic B, Parker PJ, Lidke KA, Lidke DS, Ameer-Beg SM, Martin-Fernandez ML, Ng T. Biophys J 108 1013-1026 (2015)
  35. Comment Finding the missing links in EGFR. Bessman NJ, Lemmon MA. Nat Struct Mol Biol 19 1-3 (2012)
  36. Quantitation of the effect of ErbB2 on epidermal growth factor receptor binding and dimerization. Li Y, Macdonald-Obermann J, Westfall C, Piwnica-Worms D, Pike LJ. J Biol Chem 287 31116-31125 (2012)
  37. Ligand regulation of a constitutively dimeric EGF receptor. Freed DM, Alvarado D, Lemmon MA. Nat Commun 6 7380 (2015)
  38. Membrane interaction of bound ligands contributes to the negative binding cooperativity of the EGF receptor. Arkhipov A, Shan Y, Kim ET, Shaw DE. PLoS Comput Biol 10 e1003742 (2014)
  39. The mechanism of allosteric coupling in choline kinase α1 revealed by the action of a rationally designed inhibitor. Sahún-Roncero M, Rubio-Ruiz B, Saladino G, Conejo-García A, Espinosa A, Velázquez-Campoy A, Gervasio FL, Entrena A, Hurtado-Guerrero R. Angew Chem Int Ed Engl 52 4582-4586 (2013)
  40. Fine details of IGF-1R activation, inhibition, and asymmetry determined by associated hydrogen /deuterium-exchange and peptide mass mapping. Houde D, Demarest SJ. Structure 19 890-900 (2011)
  41. Insights into HER2 signaling from step-by-step optimization of anti-HER2 antibodies. Fu W, Wang Y, Zhang Y, Xiong L, Takeda H, Ding L, Xu Q, He L, Tan W, Bethune AN, Zhou L. MAbs 6 978-990 (2014)
  42. Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells. Kozer N, Henderson C, Jackson JT, Nice EC, Burgess AW, Clayton AH. Phys Biol 8 066002 (2011)
  43. Kinase activator-receiver preference in ErbB heterodimers is determined by intracellular regions and is not coupled to extracellular asymmetry. Ward MD, Leahy DJ. J Biol Chem 290 1570-1579 (2015)
  44. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM. Nat Commun 6 5924 (2015)
  45. Negatively cooperative binding of high-density lipoprotein to the HDL receptor SR-BI. Nieland TJ, Xu S, Penman M, Krieger M. Biochemistry 50 1818-1830 (2011)
  46. The tethering arm of the EGF receptor is required for negative cooperativity and signal transduction. Adak S, DeAndrade D, Pike LJ. J Biol Chem 286 1545-1555 (2011)
  47. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. He L, Hristova K. Sci Rep 2 854 (2012)
  48. Ligand binding induces a conformational change in epidermal growth factor receptor dimers. Walker F, Rothacker J, Henderson C, Nice EC, Catimel B, Zhang HH, Scott AM, Bailey MF, Orchard SG, Adams TE, Liu Z, Garrett TP, Clayton AH, Burgess AW. Growth Factors 30 394-409 (2012)
  49. Cooperativity in Binding Processes: New Insights from Phenomenological Modeling. Cattoni DI, Chara O, Kaufman SB, González Flecha FL. PLoS One 10 e0146043 (2015)
  50. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery? Riese DJ. Expert Opin Drug Discov 6 185-193 (2011)
  51. Biology using engineering tools: the negative feedback amplifier. Birtwistle MR, Kolch W. Cell Cycle 10 2069-2076 (2011)
  52. Carboxyl-group footprinting maps the dimerization interface and phosphorylation-induced conformational changes of a membrane-associated tyrosine kinase. Zhang H, Shen W, Rempel D, Monsey J, Vidavsky I, Gross ML, Bose R. Mol Cell Proteomics 10 M110.005678 (2011)
  53. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Hu C, Leche CA, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, Lemmon MA. Nature 602 518-522 (2022)
  54. Allosteric regulation of epidermal growth factor (EGF) receptor ligand binding by tyrosine kinase inhibitors. Macdonald-Obermann JL, Pike LJ. J Biol Chem 293 13401-13414 (2018)
  55. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations. Marquèze-Pouey B, Mailfert S, Rouger V, Goaillard JM, Marguet D. PLoS One 9 e106803 (2014)
  56. Direct visualization of single-molecule membrane protein interactions in living cells. Kim DH, Park S, Kim DK, Jeong MG, Noh J, Kwon Y, Zhou K, Lee NK, Ryu SH. PLoS Biol 16 e2006660 (2018)
  57. The ErbB4 extracellular region retains a tethered-like conformation in the absence of the tether. Liu P, Bouyain S, Eigenbrot C, Leahy DJ. Protein Sci 21 152-155 (2012)
  58. Cooperative binding: a multiple personality. Martini JW, Diambra L, Habeck M. J Math Biol 72 1747-1774 (2016)
  59. Intact-cell-based surface plasmon resonance measurements for ligand affinity evaluation of a membrane receptor. Mizuguchi T, Uchimura H, Kataoka H, Akaji K, Kiso Y, Saito K. Anal Biochem 420 185-187 (2012)
  60. Negative co-operativity in the EGF receptor. Pike LJ. Biochem Soc Trans 40 15-19 (2012)
  61. Polymorphism of the epidermal growth factor receptor extracellular ligand binding domain: the dimer interface depends on domain stabilization. Zhang Z, Wriggers W. Biochemistry 50 2144-2156 (2011)
  62. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. Choi B, Cha M, Eun GS, Lee DH, Lee S, Ehsan M, Chae PS, Heo WD, Park Y, Yoon TY. Elife 9 e53934 (2020)
  63. The Dipole Potential Modifies the Clustering and Ligand Binding Affinity of ErbB Proteins and Their Signaling Efficiency. Kovács T, Batta G, Hajdu T, Szabó Á, Váradi T, Zákány F, Csomós I, Szöllősi J, Nagy P. Sci Rep 6 35850 (2016)
  64. Dimerization-based control of cooperativity. Bouhaddou M, Birtwistle MR. Mol Biosyst 10 1824-1832 (2014)
  65. Ligand binding and dynamics of the monomeric epidermal growth factor receptor ectodomain. Loeffler HH, Winn MD. Proteins 81 1931-1943 (2013)
  66. Modeling the role of negative cooperativity in metabolic regulation and homeostasis. Bush EC, Clark AE, DeBoever CM, Haynes LE, Hussain S, Ma S, McDermott MB, Novak AM, Wentworth JS. PLoS One 7 e48920 (2012)
  67. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1. Meza-Carmen V, Pacheco-Rodriguez G, Kang GS, Kato J, Donati C, Zhang CY, Vichi A, Payne DM, El-Chemaly S, Stylianou M, Moss J, Vaughan M. Proc Natl Acad Sci U S A 108 10454-10459 (2011)
  68. The ins and outs of EGFR asymmetry. Leahy DJ. Cell 142 513-515 (2010)
  69. EGF receptor family: twisting targets for improved cancer therapies. Burgess AW, Henis YI, Hynes NE, Jovin T, Levitzki A, Pinkas-Kramarski R, Yarden Y. Growth Factors 32 74-81 (2014)
  70. Investigating extracellular in situ EGFR structure and conformational changes using FRET microscopy. Roberts SK, Tynan CJ, Winn M, Martin-Fernandez ML. Biochem Soc Trans 40 189-194 (2012)
  71. Comprehensive Model for Epidermal Growth Factor Receptor Ligand Binding Involving Conformational States of the Extracellular and the Kinase Domains. Hajdu T, Váradi T, Rebenku I, Kovács T, Szöllösi J, Nagy P. Front Cell Dev Biol 8 776 (2020)
  72. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization. Ramirez UD, Nikonova AS, Liu H, Pecherskaya A, Lawrence SH, Serebriiskii IG, Zhou Y, Robinson MK, Einarson MB, Golemis EA, Jaffe EK. BMC Cancer 15 436 (2015)
  73. Effects of potato peels inclusion with exogenous enzymes in broiler diet on growth performance, nutrients digestibility and carcass characteristics. Aziz Ur Rahman M, Jamal U, Anwar U, Bilal MQ, Riaz M, Hussain M, Ahmad S. Sci Prog 104 368504211061972 (2021)
  74. Fluorescently tagged nanobodies and NanoBRET to study ligand-binding and agonist-induced conformational changes of full-length EGFR expressed in living cells. Comez D, Glenn J, Anbuhl SM, Heukers R, Smit MJ, Hill SJ, Kilpatrick LE. Front Immunol 13 1006718 (2022)
  75. Human epidermal growth factor receptor (HER1) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Martin-Fernandez ML. Biochem Soc Trans 40 184-188 (2012)
  76. Quantitative assessment of binding affinities for nanoparticles targeted to vulnerable plaque. Tang T, Tu C, Chow SY, Leung KH, Du S, Louie AY. Bioconjug Chem 26 1086-1094 (2015)
  77. Receptor differential activation and cooperativity better explain cellular preference for different chemoattractant gradient shapes in an EGFR system. White JB, Takayama S. Integr Biol (Camb) 3 1003-1010 (2011)
  78. Stoichiometric approach to quantitative analysis of biomolecules: the case of nucleic acids. Adegbenro A, Coleman S, Nesterova IV. Anal Bioanal Chem 414 1587-1594 (2022)
  79. The D-galactose specific lectin of field bean (Dolichos lablab) seed binds sugars with extreme negative cooperativity and half-of-the-sites binding. Rao DH, Gowda LR. Arch Biochem Biophys 524 85-92 (2012)
  80. The EGFR phosphatase RPTPγ is a redox-regulated suppressor of promigratory signaling. Joshi MS, Stanoev A, Huebinger J, Soetje B, Zorina V, Roßmannek L, Michel K, Müller SA, Bastiaens PI. EMBO J 42 e111806 (2023)
  81. Allosteric activation of preformed EGF receptor dimers by a single ligand binding event. Purba ER, Saita EI, Akhouri RR, Öfverstedt LG, Wilken G, Skoglund U, Maruyama IN. Front Endocrinol (Lausanne) 13 1042787 (2022)
  82. Insider influence on ErbB activity. Shilo BZ. Cell 143 181-182 (2010)
  83. Structural insights into the mechanism of leptin receptor activation. Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, Long JZ, Garcia KC. Nat Commun 14 1797 (2023)