3kur Citations

Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein.

J Mol Biol 397 397-407 (2010)
Related entries: 3kus, 3kut

Cited: 45 times
EuropePMC logo PMID: 20096703

Abstract

MLLE (previously known as PABC) is a peptide-binding domain that is found in poly(A)-binding protein (PABP) and EDD (E3 isolated by differential display), a HECT E3 ubiquitin ligase also known as HYD (hyperplastic discs tumor suppressor) or UBR5. The MLLE domain from PABP recruits various regulatory proteins and translation factors to poly(A) mRNAs through binding of a conserved 12 amino acid peptide motif called PAM2 (for PABP-interacting motif 2). Here, we determined crystal structures of the MLLE domain from PABP alone and in complex with PAM2 peptides from PABP-interacting protein 2. The structures provide a detailed view of hydrophobic determinants of the MLLE binding coded by PAM2 positions 3, 5, 7, 10, and 12 and reveal novel intermolecular polar contacts. In particular, the side chain of the invariant MLLE residue K580 forms hydrogen bonds with the backbone of PAM2 residues 5 and 7. The structures also show that peptide residues outside of the conserved PAM2 motif contribute to binding. Altogether, the structures provide a significant advance in understanding the molecular basis for the binding of PABP by PAM2-containing proteins involved in translational control, mRNA deadenylation, and other cellular processes.

Articles - 3kur mentioned but not cited (1)

  1. Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Grimm C, Pelz JP, Schneider C, Schäffler K, Fischer U. Biomolecules 10 E872 (2020)


Reviews citing this publication (12)

  1. Fungal development of the plant pathogen Ustilago maydis. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M. FEMS Microbiol Rev 36 59-77 (2012)
  2. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Shirokikh NE, Preiss T. Wiley Interdiscip Rev RNA 9 e1473 (2018)
  3. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Tritschler F, Huntzinger E, Izaurralde E. Nat Rev Mol Cell Biol 11 379-384 (2010)
  4. The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. Xie J, Kozlov G, Gehring K. Biochim Biophys Acta 1839 1062-1068 (2014)
  5. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Brook M, Gray NK. Biochem Soc Trans 40 856-864 (2012)
  6. Posttranscriptional control of growth and development in Ustilago maydis. Vollmeister E, Feldbrügge M. Curr Opin Microbiol 13 693-699 (2010)
  7. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 259-274 (2021)
  8. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. Lee J, Kim M, Itoh TQ, Lim C. Wiley Interdiscip Rev RNA 9 e1488 (2018)
  9. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. Dock-Bregeon AC, Lewis KA, Conte MR. RNA Biol 18 178-193 (2021)
  10. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Ozturk S, Uysal F. Reprod Fertil Dev 29 1890-1901 (2017)
  11. When Poly(A) Binding Proteins Meet Viral Infections, Including SARS-CoV-2. Gao J, Tang YD, Hu W, Zheng C. J Virol 96 e0013622 (2022)
  12. Post-Transcriptional Gene Regulation by HPV 16E6 and Its Host Protein Partners. Billingsley CL, Chintala S, Katzenellenbogen RA. Viruses 14 1483 (2022)

Articles citing this publication (32)

  1. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Kim HJ, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, Lee VM, Finkbeiner S, Gitler AD, Bonini NM. Nat Genet 46 152-160 (2014)
  2. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Huntzinger E, Braun JE, Heimstädt S, Zekri L, Izaurralde E. EMBO J 29 4146-4160 (2010)
  3. La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ. Mol Cell Biol 31 542-556 (2011)
  4. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. Elife 4 (2015)
  5. Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. Kozlov G, Gehring K. PLoS One 5 e10169 (2010)
  6. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of La-related proteins. Merret R, Martino L, Bousquet-Antonelli C, Fneich S, Descombin J, Billey E, Conte MR, Deragon JM. RNA 19 36-50 (2013)
  7. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. Mol Cell Proteomics 10 M111.011213 (2011)
  8. Wnt-Dependent Inactivation of the Groucho/TLE Co-repressor by the HECT E3 Ubiquitin Ligase Hyd/UBR5. Flack JE, Mieszczanek J, Novcic N, Bienz M. Mol Cell 67 181-193.e5 (2017)
  9. The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Brook M, McCracken L, Reddington JP, Lu ZL, Morrice NA, Gray NK. Biochem J 441 803-812 (2012)
  10. Cytoplasmic poly(A) binding proteins regulate telomerase activity and cell growth in human papillomavirus type 16 E6-expressing keratinocytes. Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA. J Virol 84 12934-12944 (2010)
  11. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae. Roque S, Cerciat M, Gaugué I, Mora L, Floch AG, de Zamaroczy M, Heurgué-Hamard V, Kervestin S. RNA 21 124-134 (2015)
  12. NFX1-123 and human papillomavirus 16E6 increase Notch expression in keratinocytes. Vliet-Gregg PA, Hamilton JR, Katzenellenbogen RA. J Virol 87 13741-13750 (2013)
  13. Biological role of the two overlapping poly(A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. Osawa M, Hosoda N, Nakanishi T, Uchida N, Kimura T, Imai S, Machiyama A, Katada T, Hoshino S, Shimada I. RNA 18 1957-1967 (2012)
  14. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes. Jiménez-López D, Guzmán P. BMC Res Notes 7 453 (2014)
  15. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. Ruan L, Osawa M, Hosoda N, Imai S, Machiyama A, Katada T, Hoshino S, Shimada I. J Biol Chem 285 27624-27631 (2010)
  16. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Hildebrandt A, Brüggemann M, Rücklé C, Boerner S, Heidelberger JB, Busch A, Hänel H, Voigt A, Möckel MM, Ebersberger S, Scholz A, Dold A, Schmid T, Ebersberger I, Roignant JY, Zarnack K, König J, Beli P. Genome Biol 20 216 (2019)
  17. LARP4A recognizes polyA RNA via a novel binding mechanism mediated by disordered regions and involving the PAM2w motif, revealing interplay between PABP, LARP4A and mRNA. Cruz-Gallardo I, Martino L, Kelly G, Atkinson RA, Trotta R, De Tito S, Coleman P, Ahdash Z, Gu Y, Bui TTT, Conte MR. Nucleic Acids Res 47 4272-4291 (2019)
  18. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. J Biol Chem 290 22841-22850 (2015)
  19. mRNA 3' end processing factors: a phylogenetic comparison. Darmon SK, Lutz CS. Comp Funct Genomics 2012 876893 (2012)
  20. Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Sawazaki R, Imai S, Yokogawa M, Hosoda N, Hoshino SI, Mio M, Mio K, Shimada I, Osawa M. Sci Rep 8 1455 (2018)
  21. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. RNA Biol 15 739-755 (2018)
  22. Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. Chen CA, Strouz K, Huang KL, Shyu AB. RNA 26 1143-1159 (2020)
  23. Evolutionary history exposes radical diversification among classes of interaction partners of the MLLE domain of plant poly(A)-binding proteins. Jiménez-López D, Bravo J, Guzmán P. BMC Evol Biol 15 195 (2015)
  24. Identification and functional characterization of a poly(A)-binding protein from Leishmania infantum (LiPABP). Guerra N, Vega-Sendino M, Pérez-Morgado MI, Ramos E, Soto M, Gonzalez VM, Martín ME. FEBS Lett 585 193-198 (2011)
  25. The isolated La-module of LARP1 mediates 3' poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. Mattijssen S, Kozlov G, Gaidamakov S, Ranjan A, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 275-289 (2021)
  26. A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Séraphin B, Mauxion F. RNA Biol 18 2450-2465 (2021)
  27. Nuclear, Cytosolic, and Surface-Localized Poly(A)-Binding Proteins of Plasmodium yoelii. Minns AM, Hart KJ, Subramanian S, Hafenstein S, Lindner SE. mSphere 3 e00435-17 (2018)
  28. Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail. Sagae T, Yokogawa M, Sawazaki R, Ishii Y, Hosoda N, Hoshino SI, Imai S, Shimada I, Osawa M. J Biol Chem 298 101844 (2022)
  29. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Nat Chem Biol (2023)
  30. A MademoiseLLE domain binding platform links the key RNA transporter to endosomes. Devan SK, Schott-Verdugo S, Müntjes K, Bismar L, Reiners J, Hachani E, Schmitt L, Höppner A, Smits SH, Gohlke H, Feldbrügge M. PLoS Genet 18 e1010269 (2022)
  31. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Mol Cell 83 2020-2034.e6 (2023)
  32. The ATXN2 Orthologs CID3 and CID4, Act Redundantly to In-Fluence Developmental Pathways throughout the Life Cycle of Arabidopsis thaliana. López-Juárez ZM, Aguilar-Henonin L, Guzmán P. Int J Mol Sci 22 3068 (2021)