3eba Citations

General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.

J Biol Chem 284 3273-3284 (2009)
Related entries: 3dwt, 3eak

Cited: 281 times
EuropePMC logo PMID: 19010777

Abstract

Nanobodies, single-domain antigen-binding fragments of camelid-specific heavy-chain only antibodies offer special advantages in therapy over classic antibody fragments because of their smaller size, robustness, and preference to target unique epitopes. A Nanobody differs from a human heavy chain variable domain in about ten amino acids spread all over its surface, four hallmark Nanobody-specific amino acids in the framework-2 region (positions 42, 49, 50, and 52), and a longer third antigen-binding loop (H3) folding over this area. For therapeutic applications the camelid-specific amino acid sequences in the framework have to be mutated to their human heavy chain variable domain equivalent, i.e. humanized. We performed this humanization exercise with Nanobodies of the subfamily that represents close to 80% of all dromedary-derived Nanobodies and investigated the effects on antigen affinity, solubility, expression yield, and stability. It is demonstrated that the humanization of Nanobody-specific residues outside framework-2 are neutral to the Nanobody properties. Surprisingly, the Glu-49 --> Gly and Arg-50 --> Leu humanization of hallmark amino acids generates a single domain that is more stable though probably less soluble. The other framework-2 substitutions, Phe-42 --> Val and Gly/Ala-52 --> Trp, are detrimental for antigen affinity, due to a repositioning of the H3 loop as shown by their crystal structures. These insights were used to identify a soluble, stable, well expressed universal humanized Nanobody scaffold that allows grafts of antigen-binding loops from other Nanobodies with transfer of the antigen specificity and affinity.

Articles - 3eba mentioned but not cited (2)

  1. Structural Basis of the Recruitment of Ubiquitin-specific Protease USP15 by Spliceosome Recycling Factor SART3. Zhang Q, Harding R, Hou F, Dong A, Walker JR, Bteich J, Tong Y. J Biol Chem 291 17283-17292 (2016)
  2. A complete, multi-level conformational clustering of antibody complementarity-determining regions. Nikoloudis D, Pitts JE, Saldanha JW. PeerJ 2 e456 (2014)


Reviews citing this publication (98)

  1. Nanobodies: natural single-domain antibodies. Muyldermans S. Annu Rev Biochem 82 775-797 (2013)
  2. Structure and function of immunoglobulins. Schroeder HW, Cavacini L. J Allergy Clin Immunol 125 S41-52 (2010)
  3. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F. Med Microbiol Immunol 198 157-174 (2009)
  4. The Therapeutic Potential of Nanobodies. Jovčevska I, Muyldermans S. BioDrugs 34 11-26 (2020)
  5. Nanobody: the "magic bullet" for molecular imaging? Chakravarty R, Goel S, Cai W. Theranostics 4 386-398 (2014)
  6. Nanobody-based cancer therapy of solid tumors. Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM. Nanomedicine (Lond) 10 161-174 (2015)
  7. Adnectins: engineered target-binding protein therapeutics. Lipovsek D. Protein Eng Des Sel 24 3-9 (2011)
  8. ImmunoPET: Concept, Design, and Applications. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. Chem Rev 120 3787-3851 (2020)
  9. Exploiting Nanobodies' Singular Traits. Ingram JR, Schmidt FI, Ploegh HL. Annu Rev Immunol 36 695-715 (2018)
  10. Targeting tumors with nanobodies for cancer imaging and therapy. Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PM. J Control Release 172 607-617 (2013)
  11. Camelid and shark single domain antibodies: structural features and therapeutic potential. Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schröter C, Sellmann C, Hock B, Kolmar H. Curr Opin Struct Biol 45 10-16 (2017)
  12. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. Molecules 16 3675-3700 (2011)
  13. A guide to: generation and design of nanobodies. Muyldermans S. FEBS J 288 2084-2102 (2021)
  14. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Angew Chem Int Ed Engl 57 2314-2333 (2018)
  15. Nanobodies®: new ammunition to battle viruses. Vanlandschoot P, Stortelers C, Beirnaert E, Ibañez LI, Schepens B, Depla E, Saelens X. Antiviral Res 92 389-407 (2011)
  16. Engineering aggregation-resistant antibodies. Perchiacca JM, Tessier PM. Annu Rev Chem Biomol Eng 3 263-286 (2012)
  17. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Hu Y, Liu C, Muyldermans S. Front Immunol 8 1442 (2017)
  18. Immuno-imaging using nanobodies. Vaneycken I, D'huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T. Curr Opin Biotechnol 22 877-881 (2011)
  19. Methods, Tools and Current Perspectives in Proteogenomics. Ruggles KV, Krug K, Wang X, Clauser KR, Wang J, Payne SH, Fenyö D, Zhang B, Mani DR. Mol Cell Proteomics 16 959-981 (2017)
  20. Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies. Bodelón G, Palomino C, Fernández LÁ. FEMS Microbiol Rev 37 204-250 (2013)
  21. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. Expert Opin Biol Ther 13 1149-1160 (2013)
  22. Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer. Chanier T, Chames P. Antibodies (Basel) 8 E13 (2019)
  23. Noninvasive PET Imaging of T cells. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Trends Cancer 4 359-373 (2018)
  24. Expanding the Boundaries of Biotherapeutics with Bispecific Antibodies. Husain B, Ellerman D. BioDrugs 32 441-464 (2018)
  25. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. D'Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Expert Opin Drug Deliv 11 1939-1954 (2014)
  26. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Wu Y, Jiang S, Ying T. Front Immunol 8 1802 (2017)
  27. Theranostics in immuno-oncology using nanobody derivatives. Lecocq Q, De Vlaeminck Y, Hanssens H, D'Huyvetter M, Raes G, Goyvaerts C, Keyaerts M, Devoogdt N, Breckpot K. Theranostics 9 7772-7791 (2019)
  28. Structural and genetic diversity in antibody repertoires from diverse species. de los Rios M, Criscitiello MF, Smider VV. Curr Opin Struct Biol 33 27-41 (2015)
  29. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Goldman ER, Liu JL, Zabetakis D, Anderson GP. Front Immunol 8 865 (2017)
  30. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Mujić-Delić A, de Wit RH, Verkaar F, Smit MJ. Trends Pharmacol Sci 35 247-255 (2014)
  31. Nanobodies®: proficient tools in diagnostics. Huang L, Muyldermans S, Saerens D. Expert Rev Mol Diagn 10 777-785 (2010)
  32. Single-Domain Antibodies or Nanobodies: A Class of Next-Generation Antibodies. Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F. Int Rev Immunol 37 316-322 (2018)
  33. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment. Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Front Immunol 9 273 (2018)
  34. Single-domain antibodies for biomedical applications. Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Immunopharmacol Immunotoxicol 38 21-28 (2016)
  35. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Schoonooghe S, Laoui D, Van Ginderachter JA, Devoogdt N, Lahoutte T, De Baetselier P, Raes G. Immunobiology 217 1266-1272 (2012)
  36. Perspectives on the development of neutralizing antibodies against SARS-CoV-2. Ho M. Antib Ther 3 109-114 (2020)
  37. Distinct antibody species: structural differences creating therapeutic opportunities. Muyldermans S, Smider VV. Curr Opin Immunol 40 7-13 (2016)
  38. Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. Abbott RC, Cross RS, Jenkins MR. Int J Mol Sci 21 E515 (2020)
  39. Imaging Biomarkers in Immunotherapy. Juergens RA, Zukotynski KA, Singnurkar A, Snider DP, Valliant JF, Gulenchyn KY. Biomark Cancer 8 1-13 (2016)
  40. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. Eur J Nucl Med Mol Imaging 48 1371-1389 (2021)
  41. Next generation immunotherapeutics--honing the magic bullet. Enever C, Batuwangala T, Plummer C, Sepp A. Curr Opin Biotechnol 20 405-411 (2009)
  42. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. Biomark Res 9 87 (2021)
  43. Biotechnological Trends in Spider and Scorpion Antivenom Development. Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Toxins (Basel) 8 E226 (2016)
  44. Engineering antibodies and proteins for molecular in vivo imaging. Romer T, Leonhardt H, Rothbauer U. Curr Opin Biotechnol 22 882-887 (2011)
  45. Bispecific antibodies in cancer immunotherapy. Chen S, Li J, Li Q, Wang Z. Hum Vaccin Immunother 12 2491-2500 (2016)
  46. The Application of Nanobody in CAR-T Therapy. Bao C, Gao Q, Li LL, Han L, Zhang B, Ding Y, Song Z, Zhang R, Zhang J, Wu XH. Biomolecules 11 238 (2021)
  47. Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Hoey RJ, Eom H, Horn JR. Exp Biol Med (Maywood) 244 1568-1576 (2019)
  48. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Könning D, Kolmar H. Microb Cell Fact 17 32 (2018)
  49. Nanobody-based CAR-T cells for cancer immunotherapy. Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, Safarzadeh Kozani P. Biomark Res 10 24 (2022)
  50. Nanobodies that Neutralize HIV. Weiss RA, Verrips CT. Vaccines (Basel) 7 E77 (2019)
  51. Engineered Autonomous Human Variable Domains. Nilvebrant J, Tessier PM, Sidhu SS. Curr Pharm Des 22 6527-6537 (2016)
  52. T lymphocyte-targeted immune checkpoint modulation in glioma. Kelly WJ, Giles AJ, Gilbert M. J Immunother Cancer 8 e000379 (2020)
  53. EGFR-Targeted Photodynamic Therapy. Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. Pharmaceutics 14 241 (2022)
  54. Recent advances in antibody-based immunotherapy strategies for COVID-19. Esmaeilzadeh A, Rostami S, Yeganeh PM, Tahmasebi S, Ahmadi M. J Cell Biochem 122 1389-1412 (2021)
  55. African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Magez S, Radwanska M. Future Microbiol 4 1075-1087 (2009)
  56. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Pillay TS, Muyldermans S. Ann Lab Med 41 549-558 (2021)
  57. The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. van Loben Sels JM, Green KY. Viruses 11 E432 (2019)
  58. Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. Arbabi-Ghahroudi M. Int J Mol Sci 23 5009 (2022)
  59. Single Domain Antibodies as New Biomarker Detectors. Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Diagnostics (Basel) 7 E52 (2017)
  60. Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Erreni M, Schorn T, D'Autilia F, Doni A. Biomolecules 10 E1695 (2020)
  61. A review of approaches to 18 F radiolabelling affinity peptides and proteins. Morris O, Fairclough M, Grigg J, Prenant C, McMahon A. J Labelled Comp Radiopharm 62 4-23 (2019)
  62. An update on antibody-based immunotherapies for Clostridium difficile infection. Hussack G, Tanha J. Clin Exp Gastroenterol 9 209-224 (2016)
  63. Nanobodies as in vivo, non-invasive, imaging agents. Harmand TJ, Islam A, Pishesha N, Ploegh HL. RSC Chem Biol 2 685-701 (2021)
  64. Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Del Bano J, Chames P, Baty D, Kerfelec B. Antibodies (Basel) 5 E1 (2015)
  65. The antigen-binding moiety in the driver's seat of CARs. Hanssens H, Meeus F, De Veirman K, Breckpot K, Devoogdt N. Med Res Rev 42 306-342 (2022)
  66. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Dzuvor CKO, Tettey EL, Danquah MK. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14 e1785 (2022)
  67. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Liu B, Yang D. Int J Mol Sci 23 1482 (2022)
  68. Research progress and applications of nanobody in human infectious diseases. Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N, Luo W. Front Pharmacol 13 963978 (2022)
  69. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Med Res Rev 38 1837-1873 (2018)
  70. Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Stijlemans B, De Baetselier P, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S. Front Immunol 8 724 (2017)
  71. Nanobodies as non-invasive imaging tools. Rashidian M, Ploegh H. Immunooncol Technol 7 2-14 (2020)
  72. Structural Insights into the Design of Synthetic Nanobody Libraries. Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Molecules 27 2198 (2022)
  73. Emerging trends in the diagnosis of human African Trypanosomiasis. Radwanska M. Parasitology 137 1977-1986 (2010)
  74. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TWM. Biomolecules 11 63 (2021)
  75. Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey-Holden Prostate Cancer Academy Meeting. Miyahira AK, Roychowdhury S, Goswami S, Ippolito JE, Priceman SJ, Pritchard CC, Sfanos KS, Subudhi SK, Simons JW, Pienta KJ, Soule HR. Prostate 77 123-144 (2017)
  76. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Peyron I, Kizlik-Masson C, Dubois MD, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Res Pract Thromb Haemost 4 1087-1110 (2020)
  77. Single domain antibody-based vectors in the delivery of biologics across the blood-brain barrier: a review. Gao Y, Zhu J, Lu H. Drug Deliv Transl Res 11 1818-1828 (2021)
  78. A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Silva-Pilipich N, Smerdou C, Vanrell L. Microorganisms 9 1956 (2021)
  79. Nanobodies-Useful Tools for Allergy Treatment? Flicker S, Zettl I, Tillib SV. Front Immunol 11 576255 (2020)
  80. [The future of antibody fragments, made of a single immunoglobulin domain]. Chames P, Baty D. Med Sci (Paris) 25 1159-1162 (2009)
  81. Antibody-Based Immunotherapies as a Tool for Tackling Multidrug-Resistant Bacterial Infections. Seixas AMM, Sousa SA, Leitão JH. Vaccines (Basel) 10 1789 (2022)
  82. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Biomolecules 11 298 (2021)
  83. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Front Immunol 14 1012841 (2023)
  84. Nanobodies: A Review of Generation, Diagnostics and Therapeutics. Jin BK, Odongo S, Radwanska M, Magez S. Int J Mol Sci 24 5994 (2023)
  85. Practical issues in ADAMTS13 testing and emerging therapies in thrombotic thrombocytopenic purpura. Cataland SR, Wu HM. Semin Hematol 48 242-250 (2011)
  86. Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. Maciorowski D, Ogaugwu C, Durvasula SR, Durvasula R, Kunamneni A. SLAS Discov 26 311-329 (2021)
  87. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Marino M, Holt MG. Front Neurol 13 870799 (2022)
  88. CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. Front Immunol 13 968395 (2022)
  89. Radiotheranostic Agents in Hematological Malignancies. Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D'Huyvetter M. Front Immunol 13 911080 (2022)
  90. Targeting multiple myeloma with nanobody-based heavy chain antibodies, bispecific killer cell engagers, chimeric antigen receptors, and nanobody-displaying AAV vectors. Hambach J, Mann AM, Bannas P, Koch-Nolte F. Front Immunol 13 1005800 (2022)
  91. Targeting the EGF receptor ectodomain in the context of cancer. Huang L, De Baetselier P, Beyaert R. Expert Opin Ther Targets 13 1347-1361 (2009)
  92. Application Progress of the Single Domain Antibody in Medicine. Tang H, Gao Y, Han J. Int J Mol Sci 24 4176 (2023)
  93. Breaking barriers in antibody discovery: harnessing divergent species for accessing difficult and conserved drug targets. Banik SSR, Kushnir N, Doranz BJ, Chambers R. MAbs 15 2273018 (2023)
  94. Nanobodies as Diagnostic and Therapeutic Tools for Cardiovascular Diseases (CVDs). Bocancia-Mateescu LA, Stan D, Mirica AC, Ghita MG, Stan D, Ruta LL. Pharmaceuticals (Basel) 16 863 (2023)
  95. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Front Immunol 13 1014377 (2022)
  96. Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH. Biomed Eng Adv 4 100054 (2022)
  97. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Gupta P, Hare DL, Wookey PJ. Cells 10 2347 (2021)
  98. Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies). Hurley K, Cao M, Huang H, Wang Y. Cancers (Basel) 15 3493 (2023)

Articles citing this publication (181)

  1. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, Devoogdt N, Lambrecht BN, Beschin A, Guilliams M. Nat Commun 7 10321 (2016)
  2. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, Ren J, Zhou D, Harrison PJ, Weckener M, Clare DK, Vogirala VK, Radecke J, Moynié L, Zhao Y, Gilbert-Jaramillo J, Knight ML, Tree JA, Buttigieg KR, Coombes N, Elmore MJ, Carroll MW, Carrique L, Shah PNM, James W, Townsend AR, Stuart DI, Owens RJ, Naismith JH. Nat Struct Mol Biol 27 846-854 (2020)
  3. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, Kratochvil HT, Zimanyi M, Deshpande I, Liang J, Dickinson S, Nguyen HC, Chio CM, Merz GE, Thompson MC, Diwanji D, Schaefer K, Anand AA, Dobzinski N, Zha BS, Simoneau CR, Leon K, White KM, Chio US, Gupta M, Jin M, Li F, Liu Y, Zhang K, Bulkley D, Sun M, Smith AM, Rizo AN, Moss F, Brilot AF, Pourmal S, Trenker R, Pospiech T, Gupta S, Barsi-Rhyne B, Belyy V, Barile-Hill AW, Nock S, Liu Y, Krogan NJ, Ralston CY, Swaney DL, García-Sastre A, Ott M, Vignuzzi M, QCRG Structural Biology Consortium, Walter P, Manglik A. Science 370 1473-1479 (2020)
  4. A robust pipeline for rapid production of versatile nanobody repertoires. Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, Oeffinger M, Nussenzweig MC, Fenyö D, Chait BT, Rout MP. Nat Methods 11 1253-1260 (2014)
  5. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Koenig PA, Das H, Liu H, Kümmerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD, Gatterdam K, Ruetalo N, Christensen MH, Fandrey CI, Normann S, Tödtmann JMP, Pritzl S, Hanke L, Boos J, Yuan M, Zhu X, Schmid-Burgk JL, Kato H, Schindler M, Wilson IA, Geyer M, Ludwig KU, Hällberg BM, Wu NC, Schmidt FI. Science 371 eabe6230 (2021)
  6. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. Nat Commun 11 4420 (2020)
  7. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, Yang Z, Lu L, Jiang S, Ying T. Cell Host Microbe 27 891-898.e5 (2020)
  8. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, Muyldermans S, Lahoutte T, Caveliers V. FASEB J 25 2433-2446 (2011)
  9. Nanobodies and their potential applications. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S. Nanomedicine (Lond) 8 1013-1026 (2013)
  10. Noninvasive imaging of immune responses. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, Cragnolini J, Swee LK, Victora GD, Weissleder R, Ploegh HL. Proc Natl Acad Sci U S A 112 6146-6151 (2015)
  11. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Xie YJ, Dougan M, Jailkhani N, Ingram J, Fang T, Kummer L, Momin N, Pishesha N, Rickelt S, Hynes RO, Ploegh H. Proc Natl Acad Sci U S A 116 7624-7631 (2019)
  12. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, Ren L, Jin Q, Wang J, Yang W. Nat Commun 11 4528 (2020)
  13. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Danquah W, Meyer-Schwesinger C, Rissiek B, Pinto C, Serracant-Prat A, Amadi M, Iacenda D, Knop JH, Hammel A, Bergmann P, Schwarz N, Assunção J, Rotthier W, Haag F, Tolosa E, Bannas P, Boué-Grabot E, Magnus T, Laeremans T, Stortelers C, Koch-Nolte F. Sci Transl Med 8 366ra162 (2016)
  14. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Arbabi-Ghahroudi M. Front Immunol 8 1589 (2017)
  15. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. Sci Rep 10 22370 (2020)
  16. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Gainkam LO, Caveliers V, Devoogdt N, Vanhove C, Xavier C, Boerman O, Muyldermans S, Bossuyt A, Lahoutte T. Contrast Media Mol Imaging 6 85-92 (2011)
  17. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. Yang Z, Schmidt D, Liu W, Li S, Shi L, Sheng J, Chen K, Yu H, Tremblay JM, Chen X, Piepenbrink KH, Sundberg EJ, Kelly CP, Bai G, Shoemaker CB, Feng H. J Infect Dis 210 964-972 (2014)
  18. A bispecific nanobody to provide full protection against lethal scorpion envenoming. Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N, Benlasfar Z, Govaert J, El Ayeb M, Bouhaouala-Zahar B, Muyldermans S. FASEB J 24 3479-3489 (2010)
  19. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Massa S, Vikani N, Betti C, Ballet S, Vanderhaegen S, Steyaert J, Descamps B, Vanhove C, Bunschoten A, van Leeuwen FW, Hernot S, Caveliers V, Lahoutte T, Muyldermans S, Xavier C, Devoogdt N. Contrast Media Mol Imaging 11 328-339 (2016)
  20. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, Ganneau C, Maskos U, Czech C, Grueninger F, Duyckaerts C, Dhenain M, Bay S, Delatour B, Lafaye P. J Control Release 243 1-10 (2016)
  21. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, Feng X, Bedenice D, Webb RP, Wright PM, Smith LA, Tzipori S, Shoemaker CB. PLoS One 7 e29941 (2012)
  22. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Perchiacca JM, Bhattacharya M, Tessier PM. Proteins 79 2637-2647 (2011)
  23. Nanobody Based Dual Specific CARs. De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, Kerre T, Abken H, Vandekerckhove B. Int J Mol Sci 19 E403 (2018)
  24. Immunogenicity Risk Profile of Nanobodies. Ackaert C, Smiejkowska N, Xavier C, Sterckx YGJ, Denies S, Stijlemans B, Elkrim Y, Devoogdt N, Caveliers V, Lahoutte T, Muyldermans S, Breckpot K, Keyaerts M. Front Immunol 12 632687 (2021)
  25. The use of 18F-2-fluorodeoxyglucose (FDG) to label antibody fragments for immuno-PET of pancreatic cancer. Rashidian M, Keliher E, Dougan M, Juras PK, Cavallari M, Wojtkiewicz GR, Jacobsen J, Edens JG, Tas JM, Victora G, Weissleder R, Ploegh H. ACS Cent Sci 1 142-147 (2015)
  26. A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Li T, Cai H, Yao H, Zhou B, Zhang N, van Vlissingen MF, Kuiken T, Han W, GeurtsvanKessel CH, Gong Y, Zhao Y, Shen Q, Qin W, Tian XX, Peng C, Lai Y, Wang Y, Hutter CAJ, Kuo SM, Bao J, Liu C, Wang Y, Richard AS, Raoul H, Lan J, Seeger MA, Cong Y, Rockx B, Wong G, Bi Y, Lavillette D, Li D. Nat Commun 12 4635 (2021)
  27. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, Peng B, Wang W, Chan C, Ma V, Nguyen NTH, Kappei D, Nguyen XH, Cho WC, Shi J, Le MTN. J Extracell Vesicles 10 e12057 (2021)
  28. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Conrad U, Plagmann I, Malchow S, Sack M, Floss DM, Kruglov AA, Nedospasov SA, Rose-John S, Scheller J. Plant Biotechnol J 9 22-31 (2011)
  29. Nanobody-coupled microbubbles as novel molecular tracer. Hernot S, Unnikrishnan S, Du Z, Shevchenko T, Cosyns B, Broisat A, Toczek J, Caveliers V, Muyldermans S, Lahoutte T, Klibanov AL, Devoogdt N. J Control Release 158 346-353 (2012)
  30. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. Kovalenko OV, Olland A, Piché-Nicholas N, Godbole A, King D, Svenson K, Calabro V, Müller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L. J Biol Chem 288 17408-17419 (2013)
  31. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. J Immunol 184 5696-5704 (2010)
  32. Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Goyvaerts C, De Groeve K, Dingemans J, Van Lint S, Robays L, Heirman C, Reiser J, Zhang XY, Thielemans K, De Baetselier P, Raes G, Breckpot K. Gene Ther 19 1133-1140 (2012)
  33. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein. Wei G, Meng W, Guo H, Pan W, Liu J, Peng T, Chen L, Chen CY. PLoS One 6 e28309 (2011)
  34. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38+ tumors in mouse models in vivo. Fumey W, Koenigsdorf J, Kunick V, Menzel S, Schütze K, Unger M, Schriewer L, Haag F, Adam G, Oberle A, Binder M, Fliegert R, Guse A, Zhao YJ, Cheung Lee H, Malavasi F, Goldbaum F, van Hegelsom R, Stortelers C, Bannas P, Koch-Nolte F. Sci Rep 7 14289 (2017)
  35. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Yu Y, Li J, Zhu X, Tang X, Bao Y, Sun X, Huang Y, Tian F, Liu X, Yang L. Int J Nanomedicine 12 1969-1983 (2017)
  36. Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments. Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, Momin N, Ploegh HL. Cancer Immunol Res 8 518-529 (2020)
  37. Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Abderrazek RB, Hmila I, Vincke C, Benlasfar Z, Pellis M, Dabbek H, Saerens D, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B. Biochem J 424 263-272 (2009)
  38. Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments. Gil D, Schrum AG. Adv Biosci Biotechnol 4 73-84 (2013)
  39. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Arvindam US, van Hauten PMM, Schirm D, Schaap N, Hobo W, Blazar BR, Vallera DA, Dolstra H, Felices M, Miller JS. Leukemia 35 1586-1596 (2021)
  40. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. Rouet R, Dudgeon K, Christie M, Langley D, Christ D. J Biol Chem 290 11905-11917 (2015)
  41. NK-Cell-Mediated Targeting of Various Solid Tumors Using a B7-H3 Tri-Specific Killer Engager In Vitro and In Vivo. Vallera DA, Ferrone S, Kodal B, Hinderlie P, Bendzick L, Ettestad B, Hallstrom C, Zorko NA, Rao A, Fujioka N, Ryan CJ, Geller MA, Miller JS, Felices M. Cancers (Basel) 12 E2659 (2020)
  42. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Valero J, Civit L, Dupont DM, Selnihhin D, Reinert LS, Idorn M, Israels BA, Bednarz AM, Bus C, Asbach B, Peterhoff D, Pedersen FS, Birkedal V, Wagner R, Paludan SR, Kjems J. Proc Natl Acad Sci U S A 118 e2112942118 (2021)
  43. Engineering aggregation resistance in IgG by two independent mechanisms: lessons from comparison of Pichia pastoris and mammalian cell expression. Schaefer JV, Plückthun A. J Mol Biol 417 309-335 (2012)
  44. Modern Technologies for Creating Synthetic Antibodies for Clinical application. Deyev SM, Lebedenko EN. Acta Naturae 1 32-50 (2009)
  45. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model. Moayeri M, Leysath CE, Tremblay JM, Vrentas C, Crown D, Leppla SH, Shoemaker CB. J Biol Chem 290 6584-6595 (2015)
  46. Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Gainkam LO, Keyaerts M, Caveliers V, Devoogdt N, Vanhove C, Van Grunsven L, Muyldermans S, Lahoutte T. Mol Imaging Biol 13 940-948 (2011)
  47. In vitro antiviral activity of single domain antibody fragments against poliovirus. Thys B, Schotte L, Muyldermans S, Wernery U, Hassanzadeh-Ghassabeh G, Rombaut B. Antiviral Res 87 257-264 (2010)
  48. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains. Ciccarese S, Vaccarelli G, Lefranc MP, Tasco G, Consiglio A, Casadio R, Linguiti G, Antonacci R. Dev Comp Immunol 46 300-313 (2014)
  49. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Hadži S, Garcia-Pino A, Haesaerts S, Jurenas D, Gerdes K, Lah J, Loris R. Nucleic Acids Res 45 4972-4983 (2017)
  50. A Nanobody Activation Immunotherapeutic that Selectively Destroys HER2-Positive Breast Cancer Cells. Gray MA, Tao RN, DePorter SM, Spiegel DA, McNaughton BR. Chembiochem 17 155-158 (2016)
  51. High-level expression of Camelid nanobodies in Nicotiana benthamiana. Teh YH, Kavanagh TA. Transgenic Res 19 575-586 (2010)
  52. Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager. Felices M, Lenvik TR, Kodal B, Lenvik AJ, Hinderlie P, Bendzick LE, Schirm DK, Kaminski MF, McElmurry RT, Geller MA, Eckfeldt CE, Vallera DA, Miller JS. Cancer Immunol Res 8 1139-1149 (2020)
  53. Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Van Overbeke W, Verhelle A, Everaert I, Zwaenepoel O, Vandekerckhove J, Cuvelier C, Derave W, Gettemans J. Mol Ther 22 1768-1778 (2014)
  54. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody. Zabetakis D, Anderson GP, Bayya N, Goldman ER. PLoS One 8 e77678 (2013)
  55. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Sharma PK, Dmitriev IP, Kashentseva EA, Raes G, Li L, Kim SW, Lu ZH, Arbeit JM, Fleming TP, Kaliberov SA, Goedegebuure SP, Curiel DT, Gillanders WE. Cancer Gene Ther 25 27-38 (2018)
  56. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Herlands L, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Elife 10 e73027 (2021)
  57. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Mol Pharm 16 1633-1647 (2019)
  58. The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. Hufton SE, Risley P, Ball CR, Major D, Engelhardt OG, Poole S. PLoS One 9 e103294 (2014)
  59. Development of Cys38 knock-out and humanized version of NbAahII10 nanobody with improved neutralization of AahII scorpion toxin. Ben Abderrazek R, Vincke C, Hmila I, Saerens D, Abidi N, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B. Protein Eng Des Sel 24 727-735 (2011)
  60. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. Garaicoechea L, Aguilar A, Parra GI, Bok M, Sosnovtsev SV, Canziani G, Green KY, Bok K, Parreño V. PLoS One 10 e0133665 (2015)
  61. Multispecific Antibody Development Platform Based on Human Heavy Chain Antibodies. Clarke SC, Ma B, Trinklein ND, Schellenberger U, Osborn MJ, Ouisse LH, Boudreau A, Davison LM, Harris KE, Ugamraj HS, Balasubramani A, Dang KH, Jorgensen B, Ogana HAN, Pham DT, Pratap PP, Sankaran P, Anegon I, van Schooten WC, Brüggemann M, Buelow R, Force Aldred S. Front Immunol 9 3037 (2018)
  62. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase. Iri-Sofla FJ, Rahbarizadeh F, Ahmadvand D, Rasaee MJ. Exp Cell Res 317 2630-2641 (2011)
  63. A potent complement factor C3-specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement. Jensen RK, Pihl R, Gadeberg TAF, Jensen JK, Andersen KR, Thiel S, Laursen NS, Andersen GR. J Biol Chem 293 6269-6281 (2018)
  64. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning. Gaiotto T, Hufton SE. PLoS One 11 e0164296 (2016)
  65. Generation and characterization of non-competitive furin-inhibiting nanobodies. Zhu J, Declercq J, Roucourt B, Ghassabeh GH, Meulemans S, Kinne J, David G, Vermorken AJ, Van de Ven WJ, Lindberg I, Muyldermans S, Creemers JW. Biochem J 448 73-82 (2012)
  66. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor. Krüwel T, Nevoltris D, Bode J, Dullin C, Baty D, Chames P, Alves F. Sci Rep 6 21834 (2016)
  67. Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Zheng F, Sparkes A, De Baetselier P, Schoonooghe S, Stijlemans B, Muyldermans S, Flamand V, Van Ginderachter JA, Devoogdt N, Raes G, Beschin A. Mol Imaging Biol 19 49-58 (2017)
  68. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Mo F, Duan S, Jiang X, Yang X, Hou X, Shi W, Carlos CJJ, Liu A, Yin S, Wang W, Yao H, Yu Z, Tang Z, Xie S, Ding Z, Zhao X, Hammock BD, Lu X. Signal Transduct Target Ther 6 80 (2021)
  69. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV, Lysenko AA, Shmarov MM, Logunov DY, Naroditsky BS, Tillib SV, Gintsburg AL. Antiviral Res 97 318-328 (2013)
  70. Single domain based bispecific antibody, Muc1-Bi-1, and its humanized form, Muc1-Bi-2, induce potent cancer cell killing in muc1 positive tumor cells. Li Y, Zhou C, Li J, Liu J, Lin L, Li L, Cao D, Li Q, Wang Z. PLoS One 13 e0191024 (2018)
  71. Biophysical and biochemical characterization of a VHH-based IgG-like bi- and trispecific antibody platform. Pekar L, Busch M, Valldorf B, Hinz SC, Toleikis L, Krah S, Zielonka S. MAbs 12 1812210 (2020)
  72. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer's disease. Vandesquille M, Li T, Po C, Ganneau C, Lenormand P, Dudeffant C, Czech C, Grueninger F, Duyckaerts C, Delatour B, Dhenain M, Lafaye P, Bay S. MAbs 9 1016-1027 (2017)
  73. Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Tillib SV, Ivanova TI, Vasilev LA, Rutovskaya MV, Saakyan SA, Gribova IY, Tutykhina IL, Sedova ES, Lysenko AA, Shmarov MM, Logunov DY, Naroditsky BS, Gintsburg AL. Antiviral Res 97 245-254 (2013)
  74. Monitoring liver macrophages using nanobodies targeting Vsig4: concanavalin A induced acute hepatitis as paradigm. Zheng F, Devoogdt N, Sparkes A, Morias Y, Abels C, Stijlemans B, Lahoutte T, Muyldermans S, De Baetselier P, Schoonooghe S, Beschin A, Raes G. Immunobiology 220 200-209 (2015)
  75. Novel half-life extended anti-MIF nanobodies protect against endotoxic shock. Sparkes A, De Baetselier P, Brys L, Cabrito I, Sterckx YG, Schoonooghe S, Muyldermans S, Raes G, Bucala R, Vanlandschoot P, Van Ginderachter JA, Stijlemans B. FASEB J 32 3411-3422 (2018)
  76. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Single Domain Antibodies Are Potent Inhibitors of Low Density Lipoprotein Receptor Degradation. Weider E, Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Nimesh S, Ashraf Y, Wycoff KL, Zhang J, Prat A, Seidah NG. J Biol Chem 291 16659-16671 (2016)
  77. Screening and antitumor effect of an anti‑CTLA‑4 nanobody. Wan R, Liu A, Hou X, Lai Z, Li J, Yang N, Tan J, Mo F, Hu Z, Yang X, Zhao Y, Lu X. Oncol Rep 39 511-518 (2018)
  78. Single domain antibody-based bispecific antibody induces potent specific anti-tumor activity. Li J, Zhou C, Dong B, Zhong H, Chen S, Li Q, Wang Z. Cancer Biol Ther 17 1231-1239 (2016)
  79. Targeted antigen delivery by an anti-class II MHC VHH elicits focused αMUC1(Tn) immunity. Fang T, Van Elssen CHMJ, Duarte JN, Guzman JS, Chahal JS, Ling J, Ploegh HL. Chem Sci 8 5591-5597 (2017)
  80. A Two-Step Approach for the Design and Generation of Nanobodies. Wagner HJ, Wehrle S, Weiss E, Cavallari M, Weber W. Int J Mol Sci 19 E3444 (2018)
  81. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro. Deng C, Xiong J, Gu X, Chen X, Wu S, Wang Z, Wang D, Tu J, Xie J. Oncotarget 8 38568-38580 (2017)
  82. Exploring the role of post-translational modifications in regulating α-synuclein interactions by studying the effects of phosphorylation on nanobody binding. El Turk F, De Genst E, Guilliams T, Fauvet B, Hejjaoui M, Di Trani J, Chiki A, Mittermaier A, Vendruscolo M, Lashuel HA, Dobson CM. Protein Sci 27 1262-1274 (2018)
  83. Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Soler MA, de Marco A, Fortuna S. Sci Rep 6 34869 (2016)
  84. Nanobody-Antigen Conjugates Elicit HPV-Specific Antitumor Immune Responses. Woodham AW, Cheloha RW, Ling J, Rashidian M, Kolifrath SC, Mesyngier M, Duarte JN, Bader JM, Skeate JG, Da Silva DM, Kast WM, Ploegh HL. Cancer Immunol Res 6 870-880 (2018)
  85. Rapid and Effective Generation of Nanobody Based CARs using PCR and Gibson Assembly. De Munter S, Van Parys A, Bral L, Ingels J, Goetgeluk G, Bonte S, Pille M, Billiet L, Weening K, Verhee A, Van der Heyden J, Taghon T, Leclercq G, Kerre T, Tavernier J, Vandekerckhove B. Int J Mol Sci 21 E883 (2020)
  86. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. Oncol Lett 16 1259-1266 (2018)
  87. Circulating Neutrophil MicroRNAs as Biomarkers for the Detection of Lung Cancer. Ma J, Li N, Lin Y, Gupta C, Jiang F. Biomark Cancer 8 1-7 (2016)
  88. Isolation and characterization of antigen-specific alpaca (Lama pacos) VHH antibodies by biopanning followed by high-throughput sequencing. Miyazaki N, Kiyose N, Akazawa Y, Takashima M, Hagihara Y, Inoue N, Matsuda T, Ogawa R, Inoue S, Ito Y. J Biochem 158 205-215 (2015)
  89. VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. Low S, Wu H, Jerath K, Tibolla A, Fogal B, Conrad R, MacDougall M, Kerr S, Berger V, Dave R, Villalona J, Pantages L, Ahlberg J, Li H, Van Hoorick D, Ververken C, Broadwater J, Waterman A, Singh S, Kroe-Barrett R. MAbs 12 1709322 (2020)
  90. A C3-specific nanobody that blocks all three activation pathways in the human and murine complement system. Pedersen H, Jensen RK, Hansen AG, Gadeberg TAF, Thiel S, Laursen NS, Andersen GR. J Biol Chem 295 8746-8758 (2020)
  91. A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Vallera DA, Oh F, Kodal B, Hinderlie P, Geller MA, Miller JS, Felices M. Cancers (Basel) 13 3994 (2021)
  92. High affinity anti-inorganic material antibody generation by integrating graft and evolution technologies: potential of antibodies as biointerface molecules. Hattori T, Umetsu M, Nakanishi T, Togashi T, Yokoo N, Abe H, Ohara S, Adschiri T, Kumagai I. J Biol Chem 285 7784-7793 (2010)
  93. INDI-integrated nanobody database for immunoinformatics. Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, Ganesan R, Krawczyk K. Nucleic Acids Res 50 D1273-D1281 (2022)
  94. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Yao G, Lam KH, Weisemann J, Peng L, Krez N, Perry K, Shoemaker CB, Dong M, Rummel A, Jin R. Sci Rep 7 7438 (2017)
  95. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome. Pereira SS, Moreira-Dill LS, Morais MS, Prado ND, Barros ML, Koishi AC, Mazarrotto GA, Gonçalves GM, Zuliani JP, Calderon LA, Soares AM, Pereira da Silva LH, Duarte dos Santos CN, Fernandes CF, Stabeli RG. PLoS One 9 e108067 (2014)
  96. The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. Antonacci R, Bellini M, Pala A, Mineccia M, Hassanane MS, Ciccarese S, Massari S. Dev Comp Immunol 76 105-119 (2017)
  97. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. Marino M, Zhou L, Rincon MY, Callaerts-Vegh Z, Verhaert J, Wahis J, Creemers E, Yshii L, Wierda K, Saito T, Marneffe C, Voytyuk I, Wouters Y, Dewilde M, Duqué SI, Vincke C, Levites Y, Golde TE, Saido TC, Muyldermans S, Liston A, De Strooper B, Holt MG. EMBO Mol Med 14 e09824 (2022)
  98. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein. Anderson GP, Teichler DD, Zabetakis D, Shriver-Lake LC, Liu JL, Lonsdale SG, Goodchild SA, Goldman ER. PLoS One 11 e0160534 (2016)
  99. Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging. Darling TL, Sherwood LJ, Hayhurst A. Front Immunol 8 1197 (2017)
  100. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D, Hewitt M, Wen X, Bavananthasivam J, Beitari S, Matte K, Laroche G, Giguère PM, Gervais C, Stuible M, Guimond J, Perret S, Hussack G, Langlois MA, Durocher Y, Tanha J. Commun Biol 5 933 (2022)
  101. Biparatopic nanobodies protect mice from lethal challenge with SARS-CoV-2 variants of concern. Wagner TR, Schnepf D, Beer J, Ruetalo N, Klingel K, Kaiser PD, Junker D, Sauter M, Traenkle B, Frecot DI, Becker M, Schneiderhan-Marra N, Ohnemus A, Schwemmle M, Schindler M, Rothbauer U. EMBO Rep 23 e53865 (2022)
  102. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activity in vitro and in vivo. Dorresteijn B, Rotman M, Faber D, Schravesande R, Suidgeest E, van der Weerd L, van der Maarel SM, Verrips CT, El Khattabi M. FEBS J 282 3618-3631 (2015)
  103. Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region. Soler MA, Medagli B, Wang J, Oloketuyi S, Bajc G, Huang H, Fortuna S, de Marco A. Biomolecules 11 163 (2021)
  104. Identification of Nanobodies against the Acute Myeloid Leukemia Marker CD33. Romão E, Krasniqi A, Maes L, Vandenbrande C, Sterckx YG, Stijlemans B, Vincke C, Devoogdt N, Muyldermans S. Int J Mol Sci 21 E310 (2020)
  105. Improved cancer therapy and molecular imaging with multivalent, multispecific antibodies. Sharkey RM, Rossi EA, Chang CH, Goldenberg DM. Cancer Biother Radiopharm 25 1-12 (2010)
  106. Single VHH-directed BCMA CAR-T cells cause remission of relapsed/refractory multiple myeloma. Han L, Zhang JS, Zhou J, Zhou KS, Xu BL, Li LL, Fang BJ, Yin QS, Zhu XH, Zhou H, Wei XD, Su HC, Zhang BX, Wang YN, Xiang B, Gao QL, Song YP. Leukemia 35 3002-3006 (2021)
  107. Structural insights into the mechanism of single domain VHH antibody binding to cortisol. Ding L, Wang Z, Zhong P, Jiang H, Zhao Z, Zhang Y, Ren Z, Ding Y. FEBS Lett 593 1248-1256 (2019)
  108. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Ferrari D, Garrapa V, Locatelli M, Bolchi A. Mol Biotechnol 62 43-55 (2020)
  109. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Billen B, Vincke C, Hansen R, Devoogdt N, Muyldermans S, Adriaensens P, Guedens W. Protein Expr Purif 133 25-34 (2017)
  110. Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Kazemi-Lomedasht F, Muyldermans S, Habibi-Anbouhi M, Behdani M. Iran J Basic Med Sci 21 260-266 (2018)
  111. Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Togtema M, Hussack G, Dayer G, Teghtmeyer MR, Raphael S, Tanha J, Zehbe I. Int J Mol Sci 20 E2088 (2019)
  112. Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide-Cysteine Chemistry. Chigoho DM, Lecocq Q, Awad RM, Breckpot K, Devoogdt N, Keyaerts M, Caveliers V, Xavier C, Bridoux J. Pharmaceuticals (Basel) 14 550 (2021)
  113. Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies. Zheng F, Perlman H, Matthys P, Wen Y, Lahoutte T, Muyldermans S, Lu S, Lu S, De Baetselier P, Schoonooghe S, Devoogdt N, Raes G. Sci Rep 6 35966 (2016)
  114. A resource of high-quality and versatile nanobodies for drug delivery. Shen Z, Xiang Y, Vergara S, Chen A, Xiao Z, Santiago U, Jin C, Sang Z, Luo J, Chen K, Schneidman-Duhovny D, Camacho C, Calero G, Hu B, Shi Y. iScience 24 103014 (2021)
  115. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Ikeuchi E, Kuroda D, Nakakido M, Murakami A, Tsumoto K. Sci Rep 11 20624 (2021)
  116. Development and comparison of three 89Zr-labeled anti-CLDN18.2 antibodies to noninvasively evaluate CLDN18.2 expression in gastric cancer: a preclinical study. Hu G, Zhu W, Liu Y, Wang Y, Zhang Z, Zhu S, Duan W, Zhou P, Fu C, Li F, Huo L. Eur J Nucl Med Mol Imaging 49 2634-2644 (2022)
  117. Fingerprint-like Analysis of "Nanoantibody" Selection by Phage Display Using Two Helper Phage Variants. Tillib SV, Ivanova TI, Vasilev LA. Acta Naturae 2 85-93 (2010)
  118. Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting. Roh J, Byun SJ, Seo Y, KIm M, Lee JH, Kim S, Lee Y, Lee KW, Kim JK, Kwon MH. Mol Immunol 63 513-520 (2015)
  119. Pharmacokinetics of Single Domain Antibodies and Conjugated Nanoparticles Using a Hybrid near Infrared Method. Su S, Esparza TJ, Nguyen D, Mastrogiacomo S, Kim JH, Brody DL. Int J Mol Sci 22 8695 (2021)
  120. Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4+ Cells. Traenkle B, Kaiser PD, Pezzana S, Richardson J, Gramlich M, Wagner TR, Seyfried D, Weldle M, Holz S, Parfyonova Y, Nueske S, Scholz AM, Zeck A, Jakobi M, Schneiderhan-Marra N, Schaller M, Maurer A, Gouttefangeas C, Kneilling M, Pichler BJ, Sonanini D, Rothbauer U. Front Immunol 12 799910 (2021)
  121. Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure. De Genst E, Foo KS, Xiao Y, Rohner E, de Vries E, Sohlmér J, Witman N, Hidalgo A, Kolstad TRS, Louch WE, Pehrsson S, Park A, Ikeda Y, Li X, Mayr LM, Wickson K, Jennbacken K, Hansson K, Fritsche-Danielson R, Hunt J, Chien KR. Nat Commun 13 3018 (2022)
  122. Energy profile of nanobody-GFP complex under force. Klamecka K, Severin PM, Milles LF, Gaub HE, Leonhardt H. Phys Biol 12 056009 (2015)
  123. Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Hanke L, Sheward DJ, Pankow A, Vidakovics LP, Karl V, Kim C, Urgard E, Smith NL, Astorga-Wells J, Ekström S, Coquet JM, McInerney GM, Murrell B. Sci Adv 8 eabm0220 (2022)
  124. Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies. Macarrón Palacios A, Grzeschik J, Deweid L, Krah S, Zielonka S, Rösner T, Peipp M, Valerius T, Kolmar H. Front Immunol 11 560244 (2020)
  125. Stress selections on domain antibodies: 'what doesn't kill you makes you stronger'. Enever C, Pupecka-Swider M, Sepp A. Protein Eng Des Sel 28 59-66 (2015)
  126. A bispecific T cell engager recruits both type 1 NKT and Vγ9Vδ2-T cells for the treatment of CD1d-expressing hematological malignancies. Lameris R, Ruben JM, Iglesias-Guimarais V, de Jong M, Veth M, van de Bovenkamp FS, de Weerdt I, Kater AP, Zweegman S, Horbach S, Riedl T, Winograd B, Roovers RC, Adang AEP, de Gruijl TD, Parren PWHI, van der Vliet HJ. Cell Rep Med 4 100961 (2023)
  127. Development of a Humanized VHH Based Recombinant Antibody Targeting Claudin 18.2 Positive Cancers. Zhong W, Lu Y, Ma Z, He Y, Ding Y, Yao G, Zhou Z, Dong J, Fang Y, Jiang W, Wang W, Huang Y. Front Immunol 13 885424 (2022)
  128. Long-Term Systemic Expression of a Novel PD-1 Blocking Nanobody from an AAV Vector Provides Antitumor Activity without Toxicity. Silva-Pilipich N, Martisova E, Ballesteros-Briones MC, Hervas-Stubbs S, Casares N, González-Sapienza G, Smerdou C, Vanrell L. Biomedicines 8 E562 (2020)
  129. Development of a Simple Pretreatment Immunoassay Based on an Organic Solvent-Tolerant Nanobody for the Detection of Carbofuran in Vegetable and Fruit Samples. Zhang JR, Wang Y, Dong JX, Yang JY, Zhang YQ, Wang F, Si R, Xu ZL, Wang H, Xiao ZL, Shen YD. Biomolecules 9 E576 (2019)
  130. Humanization of Camelid Single-Domain Antibodies. Sulea T. Methods Mol Biol 2446 299-312 (2022)
  131. Interaction standards for biophysics: anti-lysozyme nanobodies. Birchenough HL, Nivia HDR, Jowitt TA. Eur Biophys J 50 333-343 (2021)
  132. Intrabody Targeting HIF-1α Mediates Transcriptional Downregulation of Target Genes Related to Solid Tumors. Hu Y, Romão E, Vincke C, Brys L, Elkrim Y, Vandevenne M, Liu C, Muyldermans S. Int J Mol Sci 22 12335 (2021)
  133. Intramuscular delivery of formulated RNA encoding six linked nanobodies is highly protective for exposures to three Botulinum neurotoxin serotypes. Mukherjee J, Ondeck CA, Tremblay JM, Archer J, Debatis M, Foss A, Awata J, Erasmus JH, McNutt PM, Shoemaker CB. Sci Rep 12 11664 (2022)
  134. Isolation of an escape-resistant SARS-CoV-2 neutralizing nanobody from a novel synthetic nanobody library. Dormeshkin D, Shapira M, Dubovik S, Kavaleuski A, Katsin M, Migas A, Meleshko A, Semyonov S. Front Immunol 13 965446 (2022)
  135. Structure-based design and construction of a synthetic phage display nanobody library. Moreno E, Valdés-Tresanco MS, Molina-Zapata A, Sánchez-Ramos O. BMC Res Notes 15 124 (2022)
  136. T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Nasiri F, Safarzadeh Kozani P, Rahbarizadeh F. Front Immunol 14 1063838 (2023)
  137. A Novel Potent Carrier for Unconventional Protein Export in Ustilago maydis. Philipp M, Hussnaetter KP, Reindl M, Müntjes K, Feldbrügge M, Schipper K. Front Cell Dev Biol 9 816335 (2021)
  138. Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. Pymm P, Redmond SJ, Dolezal O, Mordant F, Lopez E, Cooney JP, Davidson KC, Haycroft ER, Tan CW, Seneviratna R, Grimley SL, Purcell DFJ, Kent SJ, Wheatley AK, Wang LF, Leis A, Glukhova A, Pellegrini M, Chung AW, Subbarao K, Uldrich AP, Tham WH, Godfrey DI, Gherardin NA. iScience 25 105259 (2022)
  139. Design and Construction of a Synthetic Nanobody Library: Testing Its Potential with a Single Selection Round Strategy. Contreras MA, Serrano-Rivero Y, González-Pose A, Salazar-Uribe J, Rubio-Carrasquilla M, Soares-Alves M, Parra NC, Camacho-Casanova F, Sánchez-Ramos O, Moreno E. Molecules 28 3708 (2023)
  140. Effective Genetic Expression of Nanoantibodies by Recombinant Adenoviral Vector in vitro. Gribova IY, Tillib SV, Tutykhina IL, Shmarov CE, Logunov DY, Verkhovskaya LV, Naroditskii BS, Gintsburg AL. Acta Naturae 3 64-70 (2011)
  141. Generation and engineering of potent single domain antibody-based bispecific IL-18 mimetics resistant to IL-18BP decoy receptor inhibition. Lipinski B, Unmuth L, Arras P, Becker S, Bauer C, Toleikis L, Krah S, Doerner A, Yanakieva D, Boje AS, Klausz K, Peipp M, Siegmund V, Evers A, Kolmar H, Pekar L, Zielonka S. MAbs 15 2236265 (2023)
  142. Human recombinant domain antibodies against multiple sclerosis antigenic peptide CSF114(Glc). Niccheri F, Real-Fernàndez F, Ramazzotti M, Lolli F, Rossi G, Rovero P, Degl'Innocenti D. J Mol Recognit 27 618-626 (2014)
  143. Isolation and optimization of camelid single-domain antibodies: Dirk Saerens' work on nanobodies. Saerens D. World J Biol Chem 1 235-238 (2010)
  144. Nanobodies against factor XI apple 3 domain inhibit binding of factor IX and reveal a novel binding site for high molecular weight kininogen. Bar Barroeta A, Marquart JA, Bakhtiari K, Meijer AB, Urbanus RT, Meijers JCM. J Thromb Haemost 20 2538-2549 (2022)
  145. Total Chemical Synthesis of a Functionalized GFP Nanobody. Huppelschoten Y, Elhebieshy AF, Hameed DS, Sapmaz A, Buchardt J, Nielsen TE, Ovaa H, van der Heden van Noort GJ. Chembiochem 23 e202200304 (2022)
  146. A Targeted Catalytic Nanobody (T-CAN) with Asparaginolytic Activity. Maggi M, Pessino G, Guardamagna I, Lonati L, Pulimeno C, Scotti C. Cancers (Basel) 13 5637 (2021)
  147. An armed anti-immunoglobulin light chain nanobody protects mice against influenza A and B infections. Liu X, Balligand T, Carpenet C, Ploegh HL. Sci Immunol 8 eadg9459 (2023)
  148. Camelization of a murine single-domain antibody against aflatoxin B1 and its antigen-binding analysis. Pang Q, Chen Y, Mukhtar H, Xiong J, Wang X, Xu T, Hammock BD, Wang J. Mycotoxin Res 38 51-60 (2022)
  149. Combining of synthetic VHH and immune scFv libraries for pregnancy-associated glycoproteins ELISA development. Dormeshkin D, Shapira M, Karputs A, Kavaleuski A, Kuzminski I, Stepanova E, Gilep A. Appl Microbiol Biotechnol 106 5093-5103 (2022)
  150. Conformational features and interaction mechanisms of VH H antibodies with β-hairpin CDR3: A case of Nb8-HigB2 interaction. Yamamoto K, Nagatoishi S, Matsunaga R, Nakakido M, Kuroda D, Tsumoto K. Protein Sci 32 e4827 (2023)
  151. Development and characterization of a camelid derived antibody targeting a linear epitope in the hinge domain of human PCSK9 protein. Li X, Hong J, Gao X, Wang M, Yang N. Sci Rep 12 12211 (2022)
  152. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Kinoshita S, Nakakido M, Mori C, Kuroda D, Caaveiro JMM, Tsumoto K. Protein Sci 31 e4450 (2022)
  153. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. Ji F, Ren J, Vincke C, Jia L, Muyldermans S. Methods Mol Biol 2446 3-17 (2022)
  154. Noninvasive Immuno-PET Imaging of CD8+ T Cell Behavior in Influenza A Virus-Infected Mice. Rothlauf PW, Li Z, Pishesha N, Xie YJ, Woodham AW, Bousbaine D, Kolifrath SC, Verschoor VL, Ploegh HL. Front Immunol 12 777739 (2021)
  155. Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting. Erreni M, D'Autilia F, Avigni R, Bolli E, Arnouk SM, Movahedi K, Debie P, Anselmo A, Parente R, Vincke C, van Leeuwen FWB, Allavena P, Garlanda C, Mantovani A, Doni A, Hernot S, Van Ginderachter JA. Theranostics 13 355-373 (2023)
  156. A comparison of the binding sites of antibodies and single-domain antibodies. Gordon GL, Capel HL, Guloglu B, Richardson E, Stafford RL, Deane CM. Front Immunol 14 1231623 (2023)
  157. A library approach for the de novo high-throughput isolation of humanized VHH domains with favorable developability properties following camelid immunization. Arras P, Yoo HB, Pekar L, Schröter C, Clarke T, Krah S, Klewinghaus D, Siegmund V, Evers A, Zielonka S. MAbs 15 2261149 (2023)
  158. AI/ML combined with next-generation sequencing of VHH immune repertoires enables the rapid identification of de novo humanized and sequence-optimized single domain antibodies: a prospective case study. Arras P, Yoo HB, Pekar L, Clarke T, Friedrich L, Schröter C, Schanz J, Tonillo J, Siegmund V, Doerner A, Krah S, Guarnera E, Zielonka S, Evers A. Front Mol Biosci 10 1249247 (2023)
  159. Comment Albumin binding improves nanobody pharmacokinetics for dual-modality PET/NIRF imaging of CEACAM5 in colorectal cancer models. Song W, Wei W, Lan X, Cai W. Eur J Nucl Med Mol Imaging 50 2591-2594 (2023)
  160. Bispecific antibody targeting both B7-H3 and PD-L1 exhibits superior antitumor activities. Li HY, Chen YL, Deng XN, Li HH, Tan J, Liu GJ, Zheng YJ, Pei M, Peng KT, Yue LL, Chen XJ, Liu Y, Zhao YS, Wang CH. Acta Pharmacol Sin (2023)
  161. Blocking of Histamine Release and IgE Binding to FcεRI on Human Basophils by Antibodies Produced in Camels. Khaled AQ, Sana Y, Abdulrahman R, Raida K, Sami AH. Allergy Asthma Immunol Res 7 583-589 (2015)
  162. Characterization of novel CD19-specific VHHs isolated from a camelid immune library by phage display. Ganji M, Safarzadeh Kozani P, Rahbarizadeh F. J Transl Med 21 891 (2023)
  163. Co-administration of an effector antibody enhances the half-life and therapeutic potential of RNA-encoded nanobodies. Thran M, Pönisch M, Danz H, Horscroft N, Ichtchenko K, Tzipori S, Shoemaker CB. Sci Rep 13 14632 (2023)
  164. Co-crystallisation and humanisation of an anti-HER2 single-domain antibody as a theranostic tool. Sawmynaden K, Wong N, Davies S, Cowan R, Brown R, Tang D, Henry M, Tickle D, Matthews D, Carr M, Bakrania P, Hoi Ting H, Hall G. PLoS One 18 e0288259 (2023)
  165. Computational design of novel nanobodies targeting the receptor binding domain of variants of concern of SARS-CoV-2. Longsompurana P, Rungrotmongkol T, Plongthongkum N, Wangkanont K, Wolschann P, Poo-Arporn RP, Poo-Arporn RP. PLoS One 18 e0293263 (2023)
  166. Development of high-affinity single chain Fv against foot-and-mouth disease virus. Jung JG, Jeong GM, Yim SS, Jeong KJ. Enzyme Microb Technol 84 50-55 (2016)
  167. Domain swapping of complementarity-determining region in nanobodies produced by Pichia pastoris. Miura N, Miyamoto K, Ohtani Y, Yaginuma K, Aburaya S, Kitagawa Y, Aoki W, Ueda M. AMB Express 9 107 (2019)
  168. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody. Esparza TJ, Su S, Francescutti CM, Rodionova E, Kim JH, Brody DL. Fluids Barriers CNS 20 64 (2023)
  169. Facile One-Step Generation of Camelid VHH and Avian scFv Libraries for Phage Display by Golden Gate Cloning. Bauer C, Ciesielski E, Pekar L, Krah S, Toleikis L, Zielonka S, Sellmann C. Methods Mol Biol 2681 47-60 (2023)
  170. Framework humanization optimizes potency of anti-CD72 nanobody CAR-T cells for B-cell malignancies. Temple WC, Nix MA, Naik A, Izgutdina A, Huang BJ, Wicaksono G, Phojanakong P, Serrano JAC, Young EP, Ramos E, Salangsang F, Steri V, Xirenayi S, Hermiston M, Logan AC, Stieglitz E, Wiita AP. J Immunother Cancer 11 e006985 (2023)
  171. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, Smith JM, Barman S, Zhao F, Keating C, Limbo O, Verma M, Liu J, Stanfield RL, Zhu X, Turner HL, Sok D, Huang PS, Burton DR, Ward AB, Wilson IA, Jardine JG. Proc Natl Acad Sci U S A 120 e2216612120 (2023)
  172. Identification and Characterization of Specific Nanobodies against Trop-2 for Tumor Targeting. Hu Y, Wang Y, Lin J, Wu S, Lv H, Ji X, Wang S. Int J Mol Sci 23 7942 (2022)
  173. Impact in stability during sequential CDR grafting to construct camelid VHH antibodies against zinc oxide and gold. Saito R, Saito Y, Nakazawa H, Hattori T, Kumagai I, Umetsu M, Makabe K. J Biochem 164 21-25 (2018)
  174. Increasing the melting temperature of VHH with the in silico free energy score. Tomimoto Y, Yamazaki R, Shirai H. Sci Rep 13 4922 (2023)
  175. Nanobody derived using a peptide epitope from the spike protein receptor-binding motif inhibits entry of SARS-CoV-2 variants. Mendon N, Ganie RA, Kesarwani S, Dileep D, Sasi S, Lama P, Chandra A, Sirajuddin M. J Biol Chem 299 102732 (2023)
  176. Nanobody-based pannexin1 channel inhibitors reduce inflammation in acute liver injury. Van Campenhout R, De Groof TWM, Kadam P, Kwak BR, Muyldermans S, Devoogdt N, Vinken M. J Nanobiotechnology 21 371 (2023)
  177. Preparation and identification of a single domain antibody specific for adenovirus vectors and its application to the immunoaffinity purification of adenoviruses. Cheng Y, Hao Y, Bao F, Zhang H, Liu Y, Ao K, Fu S, Wu Q, Wang Z. AMB Express 12 80 (2022)
  178. Respiratory syncytial virus-approved mAb Palivizumab as ligand for anti-idiotype nanobody-based synthetic cytokine receptors. Ettich J, Wittich C, Moll JM, Behnke K, Floss DM, Reiners J, Christmann A, Lang PA, Smits SHJ, Kolmar H, Scheller J. J Biol Chem 299 105270 (2023)
  179. Screening and identification of an anti-PD-1 nanobody with antitumor activity. Zhang Y, Yang S, Jiang D, Li Y, Ma S, Wang L, Li G, Wang H, Zhang A, Xu G. Biosci Rep BSR20221546 (2022)
  180. Targeting hemoglobin receptors IsdH and IsdB of Staphylococcus aureus with a single VHH antibody inhibits bacterial growth. Valenciano-Bellido S, Caaveiro JMM, Nakakido M, Kuroda D, Aikawa C, Nakagawa I, Tsumoto K. J Biol Chem 299 104927 (2023)
  181. Therapeutic Antibodies Targeting Potassium Ion Channels. Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Handb Exp Pharmacol 267 507-545 (2021)