3d98 Citations

Structure and function of GlmU from Mycobacterium tuberculosis.

Acta Crystallogr D Biol Crystallogr 65 275-83 (2009)
Related entries: 2qkx, 3d8v

Cited: 30 times
EuropePMC logo PMID: 19237750

Abstract

Antibiotic resistance is a major issue in the treatment of infectious diseases such as tuberculosis. Existing antibiotics target only a few cellular pathways and there is an urgent need for antibiotics that have novel molecular mechanisms. The glmU gene is essential in Mycobacterium tuberculosis, being required for optimal bacterial growth, and has been selected as a possible drug target for structural and functional investigation. GlmU is a bifunctional acetyltransferase/uridyltransferase that catalyses the formation of UDP-GlcNAc from GlcN-1-P. UDP-GlcNAc is a substrate for two important biosynthetic pathways: lipopolysaccharide and peptidoglycan synthesis. The crystal structure of M. tuberculosis GlmU has been determined in an unliganded form and in complex with GlcNAc-1-P or UDP-GlcNAc. The structures reveal the residues that are responsible for substrate binding. Enzyme activities were characterized by (1)H NMR and suggest that the presence of acetyl-coenzyme A has an inhibitory effect on uridyltransferase activity.

Reviews - 3d98 mentioned but not cited (1)

  1. The structural biology of enzymes involved in natural product glycosylation. Singh S, Phillips GN, Thorson JS. Nat Prod Rep 29 1201-1237 (2012)

Articles - 3d98 mentioned but not cited (4)

  1. Structure and function of GlmU from Mycobacterium tuberculosis. Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ. Acta Crystallogr D Biol Crystallogr 65 275-283 (2009)
  2. The Mechanism of Acetyl Transfer Catalyzed by Mycobacterium tuberculosis GlmU. Craggs PD, Mouilleron S, Rejzek M, de Chiara C, Young RJ, Field RA, Argyrou A, de Carvalho LPS. Biochemistry 57 3387-3401 (2018)
  3. Self-association studies of the bifunctional N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli. Trempe JF, Shenker S, Kozlov G, Gehring K. Protein Sci 20 745-752 (2011)
  4. Identification of Mtb GlmU Uridyltransferase Domain Inhibitors by Ligand-Based and Structure-Based Drug Design Approaches. Singh M, Kempanna P, Bharatham K. Molecules 27 2805 (2022)


Reviews citing this publication (7)

  1. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Abrahams KA, Besra GS. Parasitology 145 116-133 (2018)
  2. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Gautam A, Vyas R, Tewari R. Crit Rev Biotechnol 31 295-336 (2011)
  3. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GE, Lamichhane G, Lameira J. Tuberculosis (Edinb) 95 95-111 (2015)
  4. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Batt SM, Burke CE, Moorey AR, Besra GS. Cell Surf 6 100044 (2020)
  5. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Catalão MJ, Filipe SR, Pimentel M. Front Microbiol 10 190 (2019)
  6. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. Chem Rev 122 9848-9879 (2022)
  7. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Raghavendra T, Patil S, Mukherjee R. Glycoconj J 35 421-432 (2018)

Articles citing this publication (18)

  1. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Vasa S, Lin L, Shi C, Habenstein B, Riedel D, Kühn J, Thanbichler M, Lange A. Proc Natl Acad Sci U S A 112 E127-36 (2015)
  2. Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU. Zhou Y, Xin Y, Sha S, Ma Y. Arch Microbiol 193 751-757 (2011)
  3. Substrate-bound crystal structures reveal features unique to Mycobacterium tuberculosis N-acetyl-glucosamine 1-phosphate uridyltransferase and a catalytic mechanism for acetyl transfer. Jagtap PK, Soni V, Vithani N, Jhingan GD, Bais VS, Nandicoori VK, Prakash B. J Biol Chem 287 39524-39537 (2012)
  4. A web server for predicting inhibitors against bacterial target GlmU protein. Singla D, Anurag M, Dash D, Raghava GP. BMC Pharmacol 11 5 (2011)
  5. The three-dimensional Structure of a mycobacterial DapD provides insights into DapD diversity and reveals unexpected particulars about the enzymatic mechanism. Schuldt L, Weyand S, Kefala G, Weiss MS. J Mol Biol 389 863-879 (2009)
  6. Anti-Tubercular Properties of 4-Amino-5-(4-Fluoro-3- Phenoxyphenyl)-4H-1,2,4-Triazole-3-Thiol and Its Schiff Bases: Computational Input and Molecular Dynamics. Venugopala KN, Kandeel M, Pillay M, Deb PK, Abdallah HH, Mahomoodally MF, Chopra D. Antibiotics (Basel) 9 E559 (2020)
  7. Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group. Verma SK, Jaiswal M, Kumar N, Parikh A, Nandicoori VK, Prakash B. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 435-439 (2009)
  8. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity. Soni V, Suryadevara P, Sriram D, OSDD Consortium, Kumar S, Nandicoori VK, Yogeeswari P. J Mol Model 21 174 (2015)
  9. The Corynebacterium pseudotuberculosis in silico predicted pan-exoproteome. Santos AR, Carneiro A, Gala-García A, Pinto A, Barh D, Barbosa E, Aburjaile F, Dorella F, Rocha F, Guimarães L, Zurita-Turk M, Ramos R, Almeida S, Soares S, Pereira U, Abreu VC, Silva A, Miyoshi A, Azevedo V. BMC Genomics 13 Suppl 5 S6 (2012)
  10. Kinetic modelling of GlmU reactions - prioritization of reaction for therapeutic application. Singh VK, Das K, Seshadri K. PLoS One 7 e43969 (2012)
  11. Identification of amino acids involved in catalytic process of M. tuberculosis GlmU acetyltransferase. Zhou Y, Yu W, Zheng Q, Xin Y, Ma Y. Glycoconj J 29 297-303 (2012)
  12. Structure and mutational analysis of the archaeal GTP:AdoCbi-P guanylyltransferase (CobY) from Methanocaldococcus jannaschii: insights into GTP binding and dimerization. Newmister SA, Otte MM, Escalante-Semerena JC, Rayment I. Biochemistry 50 5301-5313 (2011)
  13. Linking the Effect of Antibiotics on Partial-Nitritation Biofilters: Performance, Microbial Communities and Microbial Activities. Gonzalez-Martinez A, Margareto A, Rodriguez-Sanchez A, Pesciaroli C, Diaz-Cruz S, Barcelo D, Vahala R. Front Microbiol 9 354 (2018)
  14. Novel lead compound optimization and synthesized based on the target structure of Xanthomonas oryzae pv. oryzae GlmU. Qi X, Deng W, Gao M, Mao B, Xu S, Chen C, Zhang Q. Pestic Biochem Physiol 122 22-28 (2015)
  15. Purification and biochemical characterisation of GlmU from Yersinia pestis. Patin D, Bayliss M, Mengin-Lecreulx D, Oyston P, Blanot D. Arch Microbiol 197 371-378 (2015)
  16. CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from Aspergillus nidulans reveals key conformations for activity regulation and function. Han X, D'Angelo C, Otamendi A, Cifuente JO, de Astigarraga E, Ochoa-Lizarralde B, Grininger M, Routier FH, Guerin ME, Fuehring J, Etxebeste O, Connell SR. mBio 14 e0041423 (2023)
  17. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN. Mol Divers 26 1675-1695 (2022)
  18. Structural and functional insights into δ-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Patel KD, Gulick AM. Commun Biol 6 982 (2023)