2vbl Citations

Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.

Abstract

Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.

Articles - 2vbl mentioned but not cited (2)

  1. Hypothetical in silico model of the early-stage intermediate in protein folding. Kalinowska B, Alejster P, Sałapa K, Baster Z, Roterman I. J Mol Model 19 4259-4269 (2013)
  2. Statistical dictionaries for hypothetical in silico model of the early-stage intermediate in protein folding. Kalinowska B, Fabian P, Stąpor K, Roterman I. J Comput Aided Mol Des 29 609-618 (2015)


Reviews citing this publication (37)

  1. Genome-editing Technologies for Gene and Cell Therapy. Maeder ML, Gersbach CA. Mol Ther 24 430-446 (2016)
  2. Synthetic biology moving into the clinic. Ruder WC, Lu T, Collins JJ. Science 333 1248-1252 (2011)
  3. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Curr Gene Ther 11 11-27 (2011)
  4. Genome editing at the crossroads of delivery, specificity, and fidelity. Maggio I, Gonçalves MA. Trends Biotechnol 33 280-291 (2015)
  5. CRISPR-Cas12a: Functional overview and applications. Paul B, Montoya G. Biomed J 43 8-17 (2020)
  6. Homing endonucleases: DNA scissors on a mission. Hafez M, Hausner G. Genome 55 553-569 (2012)
  7. Engineering signal transduction pathways. Kiel C, Yus E, Serrano L. Cell 140 33-47 (2010)
  8. Artificial DNA cutters for DNA manipulation and genome engineering. Aiba Y, Sumaoka J, Komiyama M. Chem Soc Rev 40 5657-5668 (2011)
  9. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Arnould S, Delenda C, Grizot S, Desseaux C, Pâques F, Silva GH, Smith J. Protein Eng Des Sel 24 27-31 (2011)
  10. Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Mimeault M, Batra SK. Ageing Res Rev 8 94-112 (2009)
  11. Homing endonucleases: from basics to therapeutic applications. Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Cell Mol Life Sci 67 727-748 (2010)
  12. Targeted gene disruption to cure HIV. Stone D, Kiem HP, Jerome KR. Curr Opin HIV AIDS 8 217-223 (2013)
  13. Progress and prospects: gene therapy for inherited immunodeficiencies. Qasim W, Gaspar HB, Thrasher AJ. Gene Ther 16 1285-1291 (2009)
  14. Zinc-finger nucleases for somatic gene therapy: the next frontier. Rahman SH, Maeder ML, Joung JK, Cathomen T. Hum Gene Ther 22 925-933 (2011)
  15. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Belfort M, Bonocora RP. Methods Mol Biol 1123 1-26 (2014)
  16. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Yanik M, Müller B, Song F, Gall J, Wagner F, Wende W, Lorenz B, Stieger K. Prog Retin Eye Res 56 1-18 (2017)
  17. Targeted approaches for gene therapy and the emergence of engineered meganucleases. Galetto R, Duchateau P, Pâques F. Expert Opin Biol Ther 9 1289-1303 (2009)
  18. The genome editing revolution: A CRISPR-Cas TALE off-target story. Stella S, Montoya G. Bioessays 38 Suppl 1 S4-S13 (2016)
  19. Recent advances in targeted genome engineering in mammalian systems. Sun N, Abil Z, Zhao H. Biotechnol J 7 1074-1087 (2012)
  20. Atomistic modeling of protein-DNA interaction specificity: progress and applications. Liu LA, Bradley P. Curr Opin Struct Biol 22 397-405 (2012)
  21. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. Legerski RJ. Environ Mol Mutagen 51 540-551 (2010)
  22. Computational design gains momentum in enzyme catalysis engineering. Wijma HJ, Janssen DB. FEBS J 280 2948-2960 (2013)
  23. Engineering altered protein-DNA recognition specificity. Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Nucleic Acids Res 46 4845-4871 (2018)
  24. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease. Dupuy A, Sarasin A. Mutat Res 776 2-8 (2015)
  25. Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. Mimeault M, Batra SK. J Cell Mol Med 14 116-134 (2010)
  26. Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein post-translational modifications. Casado-Vela J, Cebrián A, Gómez del Pulgar MT, Sánchez-López E, Vilaseca M, Menchén L, Diema C, Sellés-Marchart S, Martínez-Esteso MJ, Yubero N, Bru-Martínez R, Lacal JC. Proteomics 11 590-603 (2011)
  27. Targeted gene therapies: tools, applications, optimization. Humbert O, Davis L, Maizels N. Crit Rev Biochem Mol Biol 47 264-281 (2012)
  28. Engineering DNA processing enzymes for the postgenomic era. Buchholz F. Curr Opin Biotechnol 20 383-389 (2009)
  29. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Guha TK, Edgell DR. Int J Mol Sci 18 E2565 (2017)
  30. Build to understand: synthetic approaches to biology. Wang LZ, Wu F, Flores K, Lai YC, Wang X. Integr Biol (Camb) 8 394-408 (2016)
  31. Generation of novel nucleases with extended specificity by rational and combinatorial strategies. Pingoud A, Wende W. Chembiochem 12 1495-1500 (2011)
  32. Molecular scissors for in situ cellular repair. Prieto J, Molina R, Montoya G. Crit Rev Biochem Mol Biol 47 207-221 (2012)
  33. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Int J Mol Sci 22 10355 (2021)
  34. Hybrid lentiviral vectors. Qasim W, Vink CA, Thrasher AJ. Mol Ther 18 1263-1267 (2010)
  35. Transient DNA / RNA-protein interactions. Blanco FJ, Montoya G. FEBS J 278 1643-1650 (2011)
  36. Genetic strategies for the treatment of sickle cell anaemia. Mansilla-Soto J, Rivière I, Sadelain M. Br J Haematol 154 715-727 (2011)
  37. Current Therapeutic Strategies of Xeroderma Pigmentosum. Hossain M, Hasan A, Shawan MMAK, Banik S, Jahan I. Indian J Dermatol 66 660-667 (2021)

Articles citing this publication (68)

  1. A TALE nuclease architecture for efficient genome editing. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. Nat Biotechnol 29 143-148 (2011)
  2. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Anders C, Niewoehner O, Duerst A, Jinek M. Nature 513 569-573 (2014)
  3. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ, Burt A, Crisanti A. Nature 473 212-215 (2011)
  4. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MA. Nucleic Acids Res 41 e63 (2013)
  5. Chromosomal translocations induced at specified loci in human stem cells. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M. Proc Natl Acad Sci U S A 106 10620-10625 (2009)
  6. Heritable targeted mutagenesis in maize using a designed endonuclease. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA. Plant J 61 176-187 (2010)
  7. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Pâques F, Duchateau P. Nucleic Acids Res 37 5405-5419 (2009)
  8. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Delgado J, Radusky LG, Cianferoni D, Serrano L. Bioinformatics 35 4168-4169 (2019)
  9. Homing endonucleases from mobile group I introns: discovery to genome engineering. Stoddard BL. Mob DNA 5 7 (2014)
  10. Exploitation of binding energy for catalysis and design. Thyme SB, Jarjour J, Takeuchi R, Havranek JJ, Ashworth J, Scharenberg AM, Stoddard BL, Baker D. Nature 461 1300-1304 (2009)
  11. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. Ménoret S, Fontanière S, Jantz D, Tesson L, Thinard R, Rémy S, Usal C, Ouisse LH, Fraichard A, Anegon I. FASEB J 27 703-711 (2013)
  12. Tapping natural reservoirs of homing endonucleases for targeted gene modification. Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL. Proc Natl Acad Sci U S A 108 13077-13082 (2011)
  13. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Ashworth J, Taylor GK, Havranek JJ, Quadri SA, Stoddard BL, Baker D. Nucleic Acids Res 38 5601-5608 (2010)
  14. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Plant J 76 888-899 (2013)
  15. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, Che Y, Lape J, Bell P, Calcedo R, Buza EL, Saveliev A, Bartsevich VV, He Z, White J, Li M, Jantz D, Wilson JM. Nat Biotechnol 36 717-725 (2018)
  16. Meganucleases can restore the reading frame of a mutated dystrophin. Chapdelaine P, Pichavant C, Rousseau J, Pâques F, Tremblay JP. Gene Ther 17 846-858 (2010)
  17. Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells. Grosse S, Huot N, Mahiet C, Arnould S, Barradeau S, Clerre DL, Chion-Sotinel I, Jacqmarcq C, Chapellier B, Ergani A, Desseaux C, Cédrone F, Conseiller E, Pâques F, Labetoulle M, Smith J. Mol Ther 19 694-702 (2011)
  18. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Jarjour J, West-Foyle H, Certo MT, Hubert CG, Doyle L, Getz MM, Stoddard BL, Scharenberg AM. Nucleic Acids Res 37 6871-6880 (2009)
  19. Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Muñoz IG, Prieto J, Subramanian S, Coloma J, Redondo P, Villate M, Merino N, Marenchino M, D'Abramo M, Gervasio FL, Grizot S, Daboussi F, Smith J, Chion-Sotinel I, Pâques F, Duchateau P, Alibés A, Stricher F, Serrano L, Blanco FJ, Montoya G. Nucleic Acids Res 39 729-743 (2011)
  20. Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Daboussi F, Zaslavskiy M, Poirot L, Loperfido M, Gouble A, Guyot V, Leduc S, Galetto R, Grizot S, Oficjalska D, Perez C, Delacôte F, Dupuy A, Chion-Sotinel I, Le Clerre D, Lebuhotel C, Danos O, Lemaire F, Oussedik K, Cédrone F, Epinat JC, Smith J, Yáñez-Muñoz RJ, Dickson G, Popplewell L, Koo T, VandenDriessche T, Chuah MK, Duclert A, Duchateau P, Pâques F. Nucleic Acids Res 40 6367-6379 (2012)
  21. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example. Alibés A, Nadra AD, De Masi F, Bulyk ML, Serrano L, Stricher F. Nucleic Acids Res 38 7422-7431 (2010)
  22. Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Larocque JR, Jasin M. Mol Cell Biol 30 1887-1897 (2010)
  23. Adeno-associated virus: a key to the human genome? Henckaerts E, Linden RM. Future Virol 5 555-574 (2010)
  24. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Pâques F, Duchateau P. Nucleic Acids Res 38 2006-2018 (2010)
  25. Efficient gene targeting mediated by a lentiviral vector-associated meganuclease. Izmiryan A, Basmaciogullari S, Henry A, Paques F, Danos O. Nucleic Acids Res 39 7610-7619 (2011)
  26. Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. Di WL, Larcher F, Semenova E, Talbot GE, Harper JI, Del Rio M, Thrasher AJ, Qasim W. Mol Ther 19 408-416 (2011)
  27. Regulation of the specialized DNA polymerase eta: revisiting the biological relevance of its PCNA- and ubiquitin-binding motifs. Despras E, Delrieu N, Garandeau C, Ahmed-Seghir S, Kannouche PL. Environ Mol Mutagen 53 752-765 (2012)
  28. Comprehensive computational design of mCreI homing endonuclease cleavage specificity for genome engineering. Ulge UY, Baker DA, Monnat RJ. Nucleic Acids Res 39 4330-4339 (2011)
  29. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity. Morgan RD, Luyten YA. Nucleic Acids Res 37 5222-5233 (2009)
  30. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus. Gutierrez-Guerrero A, Sanchez-Hernandez S, Galvani G, Pinedo-Gomez J, Martin-Guerra R, Sanchez-Gilabert A, Aguilar-González A, Cobo M, Gregory P, Holmes M, Benabdellah K, Martin F. Hum Gene Ther 29 366-380 (2018)
  31. Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Marcaida MJ, Prieto J, Redondo P, Nadra AD, Alibés A, Serrano L, Grizot S, Duchateau P, Pâques F, Blanco FJ, Montoya G. Proc Natl Acad Sci U S A 105 16888-16893 (2008)
  32. Targeted mutagenesis in the progeny of maize transgenic plants. Yang M, Djukanovic V, Stagg J, Lenderts B, Bidney D, Falco SC, Lyznik LA. Plant Mol Biol 70 669-679 (2009)
  33. Letter Meganuclease-Mediated COL7A1 Gene Correction for Recessive Dystrophic Epidermolysis Bullosa. Izmiryan A, Danos O, Hovnanian A. J Invest Dermatol 136 872-875 (2016)
  34. Germline excision of transgenes in Aedes aegypti by homing endonucleases. Aryan A, Anderson MA, Myles KM, Adelman ZN. Sci Rep 3 1603 (2013)
  35. Reprogramming homing endonuclease specificity through computational design and directed evolution. Thyme SB, Boissel SJ, Arshiya Quadri S, Nolan T, Baker DA, Park RU, Kusak L, Ashworth J, Baker D. Nucleic Acids Res 42 2564-2576 (2014)
  36. The Development of TALE Nucleases for Biotechnology. Ousterout DG, Gersbach CA. Methods Mol Biol 1338 27-42 (2016)
  37. High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes. Delacôte F, Perez C, Guyot V, Duhamel M, Rochon C, Ollivier N, Macmaster R, Silva GH, Pâques F, Daboussi F, Duchateau P. PLoS One 8 e53217 (2013)
  38. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays. Cabaniols JP, Ouvry C, Lamamy V, Fery I, Craplet ML, Moulharat N, Guenin SP, Bedut S, Nosjean O, Ferry G, Devavry S, Jacqmarcq C, Lebuhotel C, Mathis L, Delenda C, Boutin JA, Duchâteau P, Cogé F, Pâques F. J Biomol Screen 15 956-967 (2010)
  39. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Molina R, Stella S, Redondo P, Gomez H, Marcaida MJ, Orozco M, Prieto J, Montoya G. Nat Struct Mol Biol 22 65-72 (2015)
  40. Non-specific protein-DNA interactions control I-CreI target binding and cleavage. Molina R, Redondo P, Stella S, Marenchino M, D'Abramo M, Gervasio FL, Epinat JC, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G. Nucleic Acids Res 40 6936-6945 (2012)
  41. 5'-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. Valton J, Daboussi F, Leduc S, Molina R, Redondo P, Macmaster R, Montoya G, Duchateau P. J Biol Chem 287 30139-30150 (2012)
  42. FoldX accurate structural protein-DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1). Blanco JD, Radusky L, Climente-González H, Serrano L. Nucleic Acids Res 46 3852-3863 (2018)
  43. Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues. McMurrough TA, Dickson RJ, Thibert SM, Gloor GB, Edgell DR. Proc Natl Acad Sci U S A 111 E2376-83 (2014)
  44. Development of safer gene delivery systems to minimize the risk of insertional mutagenesis-related malignancies: a critical issue for the field of gene therapy. Romano G. ISRN Oncol 2012 616310 (2012)
  45. BuD, a helix-loop-helix DNA-binding domain for genome modification. Stella S, Molina R, López-Méndez B, Juillerat A, Bertonati C, Daboussi F, Campos-Olivas R, Duchateau P, Montoya G. Acta Crystallogr D Biol Crystallogr 70 2042-2052 (2014)
  46. Concerted nicking of donor and chromosomal acceptor DNA promotes homology-directed gene targeting in human cells. Gonçalves MA, van Nierop GP, Holkers M, de Vries AA. Nucleic Acids Res 40 3443-3455 (2012)
  47. Mining endonuclease cleavage determinants in genomic sequence data. Szeto MD, Boissel SJ, Baker D, Thyme SB. J Biol Chem 286 32617-32627 (2011)
  48. Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. Torres R, García A, Payá M, Ramirez JC. PLoS One 6 e19794 (2011)
  49. Assaying multiple restriction endonucleases functionalities and inhibitions on DNA microarray with multifunctional gold nanoparticle probes. Ma L, Zhu Z, Li T, Wang Z. Biosens Bioelectron 52 118-123 (2014)
  50. Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Grizot S, Duclert A, Thomas S, Duchateau P, Pâques F. Nucleic Acids Res 39 6124-6136 (2011)
  51. The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Wei X, Pu A, Liu Q, Hou Q, Zhang Y, An X, Long Y, Jiang Y, Dong Z, Wu S, Wan X. Cells 11 2682 (2022)
  52. Understanding the indirect DNA read-out specificity of I-CreI Meganuclease. Prieto J, Redondo P, López-Méndez B, D'Abramo M, Merino N, Blanco FJ, Duchateau P, Montoya G, Molina R. Sci Rep 8 10286 (2018)
  53. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases. McMurrough TA, Brown CM, Zhang K, Hausner G, Junop MS, Gloor GB, Edgell DR. Nucleic Acids Res 46 11990-12007 (2018)
  54. Comprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications. Li H, Ulge UY, Hovde BT, Doyle LA, Monnat RJ. Nucleic Acids Res 40 2587-2598 (2012)
  55. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Werther R, Hallinan JP, Lambert AR, Havens K, Pogson M, Jarjour J, Galizi R, Windbichler N, Crisanti A, Nolan T, Stoddard BL. Nucleic Acids Res 45 8621-8634 (2017)
  56. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold. Molina R, Marcaida MJ, Redondo P, Marenchino M, Duchateau P, D'Abramo M, Montoya G, Prieto J. J Biol Chem 290 18534-18544 (2015)
  57. Massively parallel determination and modeling of endonuclease substrate specificity. Thyme SB, Song Y, Brunette TJ, Szeto MD, Kusak L, Bradley P, Baker D. Nucleic Acids Res 42 13839-13852 (2014)
  58. Microarray-based fluorescence assay of endonuclease functionality and inhibition. Ma L, Su M, Li T, Wang Z. Analyst 138 1048-1052 (2013)
  59. Novel reporter systems for facile evaluation of I-SceI-mediated genome editing. Muñoz NM, Beard BC, Ryu BY, Luche RM, Trobridge GD, Rawlings DJ, Scharenberg AM, Kiem HP. Nucleic Acids Res 40 e14 (2012)
  60. Generation of artificial sequence-specific nucleases via a preassembled inert-template. Xiao X, Wu T, Gu F, Zhao M. Chem Sci 7 2051-2057 (2016)
  61. Molecular scissors under light control. Zaremba M, Siksnys V. Proc Natl Acad Sci U S A 107 1259-1260 (2010)
  62. Modifying a covarying protein-DNA interaction changes substrate preference of a site-specific endonuclease. Laforet M, McMurrough TA, Vu M, Brown CM, Zhang K, Junop MS, Gloor GB, Edgell DR. Nucleic Acids Res 47 10830-10841 (2019)
  63. Venturing into the New Science of Nucleases. Tolarová M, McGrath JA, Tolar J. J Invest Dermatol 136 742-745 (2016)
  64. Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Szebényi K, Erdei Z, Péntek A, Sebe A, Orbán TI, Sarkadi B, Apáti Á. Per Med 8 347-364 (2011)
  65. News Basic research tries to decrease the risks of translational medicine. Cavazzana-Calvo M. Gene Ther 16 309-310 (2009)
  66. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification. Molina R, Redondo P, López-Méndez B, Villate M, Merino N, Blanco FJ, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G. J Biol Chem 290 28727-28736 (2015)
  67. Enhancing the thermostability of Streptomyces cyaneofuscatus strain Ms1 tyrosinase by multi-factors rational design and molecular dynamics simulations. Li Z, Zhao C, Li D, Wang L. PLoS One 18 e0288929 (2023)
  68. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters. Hu Y, Zhang Q, Xu L, Wang J, Rao J, Guo Z, Wang S. Anal Bioanal Chem 409 6677-6688 (2017)