2qwl Citations

Structural basis of J cochaperone binding and regulation of Hsp70.

Mol Cell 28 422-33 (2007)
Related entries: 2qw9, 2qwm, 2qwn, 2qwo, 2qwp, 2qwq, 2qwr

Cited: 139 times
EuropePMC logo PMID: 17996706

Abstract

The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) toward a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, although both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles.

Reviews - 2qwl mentioned but not cited (2)

  1. Allostery in the Hsp70 chaperone proteins. Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Top Curr Chem 328 99-153 (2013)
  2. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Alderson TR, Kim JH, Markley JL. Structure 24 1014-1030 (2016)

Articles - 2qwl mentioned but not cited (6)

  1. Structural basis of J cochaperone binding and regulation of Hsp70. Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R. Mol. Cell 28 422-433 (2007)
  2. Allostery in Hsp70 chaperones is transduced by subdomain rotations. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER. J. Mol. Biol. 388 475-490 (2009)
  3. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Woo HJ, Jiang J, Lafer EM, Sousa R. Biochemistry 48 11470-11477 (2009)
  4. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Elife 4 (2015)
  5. The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Gurskiy YG, Garbuz DG, Soshnikova NV, Krasnov AN, Deikin A, Lazarev VF, Sverchinskyi D, Margulis BA, Zatsepina OG, Karpov VL, Belzhelarskaya SN, Feoktistova E, Georgieva SG, Evgen'ev MB. Cell Stress Chaperones 21 1055-1064 (2016)
  6. Structure of the M. tuberculosis DnaK-GrpE complex reveals how key DnaK roles are controlled. Xiao X, Fay A, Molina PS, Kovach A, Glickman MS, Li H. Nat Commun 15 660 (2024)


Reviews citing this publication (34)

  1. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Kampinga HH, Craig EA. Nat. Rev. Mol. Cell Biol. 11 579-592 (2010)
  2. Molecular chaperone functions in protein folding and proteostasis. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Annu. Rev. Biochem. 82 323-355 (2013)
  3. Chaperone machines for protein folding, unfolding and disaggregation. Saibil H. Nat. Rev. Mol. Cell Biol. 14 630-642 (2013)
  4. Heat shock protein 70 (hsp70) as an emerging drug target. Evans CG, Chang L, Gestwicki JE. J. Med. Chem. 53 4585-4602 (2010)
  5. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Verghese J, Abrams J, Wang Y, Morano KA. Microbiol. Mol. Biol. Rev. 76 115-158 (2012)
  6. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Kirchhausen T, Owen D, Harrison SC. Cold Spring Harb Perspect Biol 6 a016725 (2014)
  7. Mechanisms of the Hsp70 chaperone system. Young JC. Biochem. Cell Biol. 88 291-300 (2010)
  8. Mechanism and components of endoplasmic reticulum-associated degradation. Hoseki J, Ushioda R, Nagata K. J. Biochem. 147 19-25 (2010)
  9. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Stricher F, Macri C, Ruff M, Muller S. Autophagy 9 1937-1954 (2013)
  10. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Rosenzweig R, Kay LE. Annu. Rev. Biochem. 83 291-315 (2014)
  11. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Smith MC, Gestwicki JE. Expert Rev Mol Med 14 e16 (2012)
  12. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. Behnke J, Feige MJ, Hendershot LM. J. Mol. Biol. 427 1589-1608 (2015)
  13. Fine-tuning multiprotein complexes using small molecules. Thompson AD, Dugan A, Gestwicki JE, Mapp AK. ACS Chem. Biol. 7 1311-1320 (2012)
  14. NMR insights into protein allostery. Manley G, Loria JP. Arch. Biochem. Biophys. 519 223-231 (2012)
  15. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Mattoo RU, Goloubinoff P. Cell. Mol. Life Sci. 71 3311-3325 (2014)
  16. Hsp70 structure, function, regulation and influence on yeast prions. Sharma D, Masison DC. Protein Pept. Lett. 16 571-581 (2009)
  17. The remarkable multivalency of the Hsp70 chaperones. Zuiderweg ER, Hightower LE, Gestwicki JE. Cell Stress Chaperones 22 173-189 (2017)
  18. DNAJs: more than substrate delivery to HSPA. Dekker SL, Kampinga HH, Bergink S. Front Mol Biosci 2 35 (2015)
  19. DNAJC proteins and pathways to parkinsonism. Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. FEBS J 286 3080-3094 (2019)
  20. Hsp70 - a master regulator in protein degradation. Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. FEBS Lett. 591 2648-2660 (2017)
  21. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Gorenberg EL, Chandra SS. Front Neurosci 11 248 (2017)
  22. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Warren AJ. Adv Biol Regul 67 109-127 (2018)
  23. Structural mechanisms of chaperone mediated protein disaggregation. Sousa R. Front Mol Biosci 1 12 (2014)
  24. J-domain protein chaperone circuits in proteostasis and disease. Zhang R, Malinverni D, Cyr DM, Rios PL, Nillegoda NB. Trends Cell Biol 33 30-47 (2023)
  25. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Liu Q, Liang C, Zhou L. Protein Sci 29 378-390 (2020)
  26. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Milosevic I. Front Cell Neurosci 12 27 (2018)
  27. ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Lacabanne D, Wiegand T, Wili N, Kozlova MI, Cadalbert R, Klose D, Mulkidjanian AY, Meier BH, Böckmann A. Molecules 25 E5268 (2020)
  28. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Johnson OT, Gestwicki JE. Cell Stress Chaperones 27 397-415 (2022)
  29. Data-driven large-scale genomic analysis reveals an intricate phylogenetic and functional landscape in J-domain proteins. Malinverni D, Zamuner S, Rebeaud ME, Barducci A, Nillegoda NB, De Los Rios P. Proc Natl Acad Sci U S A 120 e2218217120 (2023)
  30. Safeguarding Lysosomal Homeostasis by DNAJC5/CSPα-Mediated Unconventional Protein Secretion and Endosomal Microautophagy. Lee J, Xu Y, Ye Y. Front Cell Dev Biol 10 906453 (2022)
  31. Deciphering Network Crosstalk: The Current Status and Potential of miRNA Regulatory Networks on the HSP40 Molecular Chaperone Network. Budrass L, Fahlman RP, Mok SA. Front Genet 12 689922 (2021)
  32. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Almaazmi SY, Kaur RP, Singh H, Blatch GL. Front Mol Biosci 10 1216192 (2023)
  33. The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Chakafana G, Zininga T, Shonhai A. Biomolecules 9 (2019)
  34. The role of heat shock proteins in preventing amyloid toxicity. Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. Front Mol Biosci 9 1045616 (2022)

Articles citing this publication (97)

  1. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Zhuravleva A, Clerico EM, Gierasch LM. Cell 151 1296-1307 (2012)
  2. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R. Mol. Cell 31 232-243 (2008)
  3. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q. Nat. Struct. Mol. Biol. 20 900-907 (2013)
  4. The conformational dynamics of the mitochondrial Hsp70 chaperone. Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, Seidel CA, Neupert W, Lamb DC, Mokranjac D. Mol. Cell 38 89-100 (2010)
  5. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Zhuravleva A, Gierasch LM. Proc. Natl. Acad. Sci. U.S.A. 108 6987-6992 (2011)
  6. Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. Petrova K, Oyadomari S, Hendershot LM, Ron D. EMBO J. 27 2862-2872 (2008)
  7. Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Hagiwara M, Maegawa K, Suzuki M, Ushioda R, Araki K, Matsumoto Y, Hoseki J, Nagata K, Inaba K. Mol. Cell 41 432-444 (2011)
  8. An interdomain sector mediating allostery in Hsp70 molecular chaperones. Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM. Mol. Syst. Biol. 6 414 (2010)
  9. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. Wisén S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, Evans CG, Walter GM, Wipf P, Carlson HA, Brodsky JL, Zuiderweg ER, Gestwicki JE. ACS Chem. Biol. 5 611-622 (2010)
  10. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B, Bertelsen EB, Zuiderweg ER. Proc. Natl. Acad. Sci. U.S.A. 108 18966-18971 (2011)
  11. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. Xing Y, Böcking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC. EMBO J. 29 655-665 (2010)
  12. Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chang L, Miyata Y, Ung PM, Bertelsen EB, McQuade TJ, Carlson HA, Zuiderweg ER, Gestwicki JE. Chem. Biol. 18 210-221 (2011)
  13. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. Rauch JN, Gestwicki JE. J. Biol. Chem. 289 1402-1414 (2014)
  14. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Awad W, Estrada I, Shen Y, Hendershot LM. Proc Natl Acad Sci U S A 105 1164-1169 (2008)
  15. Functional divergence between co-chaperones of Hsc70. Tzankov S, Wong MJ, Shi K, Nassif C, Young JC. J. Biol. Chem. 283 27100-27109 (2008)
  16. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE. J. Biol. Chem. 285 21282-21291 (2010)
  17. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q. J. Biol. Chem. 287 5661-5672 (2012)
  18. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Alvira S, Cuéllar J, Röhl A, Yamamoto S, Itoh H, Alfonso C, Rivas G, Buchner J, Valpuesta JM. Nat Commun 5 5484 (2014)
  19. Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Yan M, Li J, Sha B. Biochem. J. 438 447-455 (2011)
  20. Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Morgner N, Schmidt C, Beilsten-Edmands V, Ebong IO, Patel NA, Clerico EM, Kirschke E, Daturpalli S, Jackson SE, Agard D, Robinson CV. Cell Rep 11 759-769 (2015)
  21. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. Zhang P, Leu JI, Murphy ME, George DL, Marmorstein R. PLoS ONE 9 e103518 (2014)
  22. Biochemical and structural studies on the high affinity of Hsp70 for ADP. Arakawa A, Handa N, Shirouzu M, Yokoyama S. Protein Sci. 20 1367-1379 (2011)
  23. DNAJC6 Mutations Associated With Early-Onset Parkinson's Disease. Olgiati S, Quadri M, Fang M, Rood JP, Saute JA, Chien HF, Bouwkamp CG, Graafland J, Minneboo M, Breedveld GJ, Zhang J, International Parkinsonism Genetics Network, Verheijen FW, Boon AJ, Kievit AJ, Jardim LB, Mandemakers W, Barbosa ER, Rieder CR, Leenders KL, Wang J, Bonifati V. Ann. Neurol. 79 244-256 (2016)
  24. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A, Caissie MC, Ferguson AD, Daigle M, Meli MV, Lewis SM, Ouellette RJ. PLoS ONE 9 e110443 (2014)
  25. High-throughput screen for Escherichia coli heat shock protein 70 (Hsp70/DnaK): ATPase assay in low volume by exploiting energy transfer. Miyata Y, Chang L, Bainor A, McQuade TJ, Walczak CP, Zhang Y, Larsen MJ, Kirchhoff P, Gestwicki JE. J Biomol Screen 15 1211-1219 (2010)
  26. J domain co-chaperone specificity defines the role of BiP during protein translocation. Vembar SS, Jonikas MC, Hendershot LM, Weissman JS, Brodsky JL. J. Biol. Chem. 285 22484-22494 (2010)
  27. The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. Kumar DP, Vorvis C, Sarbeng EB, Cabra Ledesma VC, Willis JE, Liu Q. J. Mol. Biol. 411 1099-1113 (2011)
  28. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein. Sarbeng EB, Liu Q, Tian X, Yang J, Li H, Wong JL, Zhou L, Liu Q. J. Biol. Chem. 290 8849-8862 (2015)
  29. Identification of a consensus motif in substrates bound by a Type I Hsp40. Kota P, Summers DW, Ren HY, Cyr DM, Dokholyan NV. Proc. Natl. Acad. Sci. U.S.A. 106 11073-11078 (2009)
  30. Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. Yu H, Li S, Yang C, Wei M, Song C, Zheng Z, Gu Y, Du H, Zhang J, Xia N. J Mol Model 17 987-995 (2011)
  31. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Zorzi E, Bonvini P. Cancers (Basel) 3 3921-3956 (2011)
  32. ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones. General IJ, Liu Y, Blackburn ME, Mao W, Gierasch LM, Bahar I. PLoS Comput. Biol. 10 e1003624 (2014)
  33. Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. Liu Y, Gierasch LM, Bahar I. PLoS Comput. Biol. 6 (2010)
  34. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Sousa R, Liao HS, Cuéllar J, Jin S, Valpuesta JM, Jin AJ, Lafer EM. Nat. Struct. Mol. Biol. 23 821-829 (2016)
  35. Prion-impairing mutations in Hsp70 chaperone Ssa1: effects on ATPase and chaperone activities. Needham PG, Masison DC. Arch. Biochem. Biophys. 478 167-174 (2008)
  36. Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. Stark JL, Mehla K, Chaika N, Acton TB, Xiao R, Singh PK, Montelione GT, Powers R. Biochemistry 53 1360-1372 (2014)
  37. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1. Blamowska M, Sichting M, Mapa K, Mokranjac D, Neupert W, Hell K. J. Biol. Chem. 285 4423-4431 (2010)
  38. Nucleotide-dependent interactions within a specialized Hsp70/Hsp40 complex involved in Fe-S cluster biogenesis. Kim JH, Alderson TR, Alderson TR, Frederick RO, Markley JL. J. Am. Chem. Soc. 136 11586-11589 (2014)
  39. A role for an Hsp70 nucleotide exchange factor in the regulation of synaptic vesicle endocytosis. Morgan JR, Jiang J, Oliphint PA, Jin S, Gimenez LE, Busch DJ, Foldes AE, Zhuo Y, Sousa R, Lafer EM. J. Neurosci. 33 8009-8021 (2013)
  40. Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain. Sahi C, Lee T, Inada M, Pleiss JA, Craig EA. Mol. Cell. Biol. 30 33-42 (2010)
  41. Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS. Coyne AN, Lorenzini I, Chou CC, Torvund M, Rogers RS, Starr A, Zaepfel BL, Levy J, Johannesmeyer J, Schwartz JC, Nishimune H, Zinsmaier K, Rossoll W, Sattler R, Zarnescu DC. Cell Rep 21 110-125 (2017)
  42. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation. Gao XC, Zhou CJ, Zhou ZR, Wu M, Cao CY, Hu HY. J. Biol. Chem. 287 6044-6052 (2012)
  43. Biogenesis of the mitochondrial Hsp70 chaperone. Blamowska M, Neupert W, Hell K. J. Cell Biol. 199 125-135 (2012)
  44. Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome. Srinivasan SR, Gillies AT, Chang L, Thompson AD, Gestwicki JE. Mol Biosyst 8 2323-2333 (2012)
  45. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Botha M, Chiang AN, Needham PG, Stephens LL, Hoppe HC, Külzer S, Przyborski JM, Lingelbach K, Wipf P, Brodsky JL, Shonhai A, Blatch GL. Cell Stress Chaperones 16 389-401 (2011)
  46. Transcription elongation factor GreA has functional chaperone activity. Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y. PLoS ONE 7 e47521 (2012)
  47. Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. Thakur A, Chitoor B, Goswami AV, Pareek G, Atreya HS, D'Silva P. J. Biol. Chem. 287 13194-13205 (2012)
  48. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana. Takano A, Suetsugu N, Wada M, Kohda D. Plant Cell Physiol. 51 1372-1376 (2010)
  49. Plasmodium falciparum Hsp70-x: a heat shock protein at the host-parasite interface. Hatherley R, Blatch GL, Bishop OT. J. Biomol. Struct. Dyn. 32 1766-1779 (2014)
  50. Letter Evaluation of competing J domain:Hsp70 complex models in light of existing mutational and NMR data. Sousa R, Jiang J, Lafer EM, Hinck AP, Wang L, Taylor AB, Maes EG. Proc. Natl. Acad. Sci. U.S.A. 109 E734; author reply E735 (2012)
  51. Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, Kukimoto-Niino M, Sugano S, Tanaka A, Shirouzu M, Yokoyama S. Acta Crystallogr. D Biol. Crystallogr. 66 223-232 (2010)
  52. DnaJ homolog Hdj2 facilitates Japanese encephalitis virus replication. Wang RY, Huang YR, Chong KM, Hung CY, Ke ZL, Chang RY. Virol. J. 8 471 (2011)
  53. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B. Elife 6 (2017)
  54. Hsc70-induced changes in clathrin-auxilin cage structure suggest a role for clathrin light chains in cage disassembly. Young A, Stoilova-McPhie S, Rothnie A, Vallis Y, Harvey-Smith P, Ranson N, Kent H, Brodsky FM, Pearse BM, Roseman A, Smith CJ. Traffic 14 987-996 (2013)
  55. Impaired interdomain communication in mitochondrial Hsp70 results in the loss of inward-directed translocation force. Becker D, Krayl M, Strub A, Li Y, Mayer MP, Voos W. J. Biol. Chem. 284 2934-2946 (2009)
  56. The crystal structure of the human co-chaperone P58(IPK). Svärd M, Biterova EI, Bourhis JM, Guy JE. PLoS ONE 6 e22337 (2011)
  57. The lid domain of Caenorhabditis elegans Hsc70 influences ATP turnover, cofactor binding and protein folding activity. Sun L, Edelmann FT, Kaiser CJ, Papsdorf K, Gaiser AM, Richter K. PLoS ONE 7 e33980 (2012)
  58. A dancer caught midstep: the structure of ATP-bound Hsp70. Sousa R. Mol. Cell 48 821-823 (2012)
  59. A Novel Potentially Pathogenic Rare Variant in the DNAJC7 Gene Identified in Amyotrophic Lateral Sclerosis Patients From Mainland China. Wang M, Liu Z, Yuan Y, Ni J, Li W, Hu Y, Liu P, Hou X, Huang L, Jiao B, Shen L, Jiang H, Tang B, Wang J. Front Genet 11 821 (2020)
  60. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis. Malinverni D, Jost Lopez A, De Los Rios P, Hummer G, Barducci A. Elife 6 (2017)
  61. The Balance between Mono- and NEDD8-Chains Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Bailly AP, Perrin A, Serrano-Macia M, Maghames C, Leidecker O, Trauchessec H, Martinez-Chantar ML, Gartner A, Xirodimas DP. Cell Rep 29 212-224.e8 (2019)
  62. In silico mutational studies of Hsp70 disclose sites with distinct functional attributes. Ozbaykal G, Rana Atilgan A, Atilgan C. Proteins 83 2077-2090 (2015)
  63. The specialized Hsp70 (HscA) interdomain linker binds to its nucleotide-binding domain and stimulates ATP hydrolysis in both cis and trans configurations. Alderson TR, Kim JH, Cai K, Frederick RO, Tonelli M, Markley JL. Biochemistry 53 7148-7159 (2014)
  64. 2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Rocher B, Bultelle F, Chan P, Foll FL, Letendre J, Monsinjon T, Olivier S, Péden R, Poret A, Vaudry D, Knigge T. Proteomes 3 3-41 (2015)
  65. Modeling of the Full-Size 3D Structure of Human Chaperone Hsp70 and Study of Its Interdomain Interactions. Chernorizov CK, Svedas VK. Acta Naturae 2 66-71 (2010)
  66. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Becirovic L, Brown IR. Neurochem. Res. 42 406-414 (2017)
  67. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state. Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q. Cell Stress Chaperones 22 201-212 (2017)
  68. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. Li Y, Gu J, Wang C, Hu J, Zhang S, Liu C, Zhang S, Fang Y, Li D. iScience 25 104356 (2022)
  69. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities. Durech M, Trcka F, Man P, Blackburn EA, Hernychova L, Dvorakova P, Coufalova D, Kavan D, Vojtesek B, Muller P. Mol. Cell Proteomics 15 1710-1727 (2016)
  70. Steered molecular dynamics simulation of the binding of the bovine auxilin J domain to the Hsc70 nucleotide-binding domain. Xue YL, Zhou L, Sun Y, Li H, Jones GW, Song Y. J Mol Model 23 320 (2017)
  71. Structural and functional consequences of NEDD8 phosphorylation. Stuber K, Schneider T, Werner J, Kovermann M, Marx A, Scheffner M. Nat Commun 12 5939 (2021)
  72. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex. Weyer FA, Gumiero A, Gesé GV, Lapouge K, Sinning I. Nat. Struct. Mol. Biol. 24 144-151 (2017)
  73. The joining of the Hsp90 and Hsp70 chaperone cycles yields transient interactions and stable intermediates: insights from mass spectrometry. Schmidt C, Beilsten-Edmands V, Robinson CV. Oncotarget 6 18276-18281 (2015)
  74. ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the glucocorticoid receptor. Hong W, Chen L, Liu Y, Gao W. Biochem. Biophys. Res. Commun. 390 77-81 (2009)
  75. Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant. O'Donnell JP, Marsh HM, Sondermann H, Sevier CS. Biochemistry 57 1073-1086 (2018)
  76. Environmental Stress Responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. Li G, Zhao H, Zhang X, Zhang Y, Zhao H, Yang X, Guo X, Xu B. Front Genet 9 445 (2018)
  77. Kinetics of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function. Wu S, Hong L, Wang Y, Yu J, Yang J, Yang J, Zhang H, Perrett S. Proc Natl Acad Sci U S A 117 7814-7823 (2020)
  78. Label-free nondestructive discrimination of colon carcinoma sublines and biomolecular insights into their differential Hsp70 expression: DNA/RNA nucleobase specific changes. Donfack P, Multhoff G, Materny A. Chembiochem 12 1922-1936 (2011)
  79. Proteome-wide identification of HSP70/HSC70 chaperone clients in human cells. Ryu SW, Stewart R, Pectol DC, Ender NA, Wimalarathne O, Lee JH, Zanini CP, Harvey A, Huibregtse JM, Mueller P, Paull TT. PLoS Biol 18 e3000606 (2020)
  80. Structure and activity of JAC1 J-domain implicate the involvement of the cochaperone activity with HSC70 in chloroplast photorelocation movement. Suetsugu N, Takano A, Kohda D, Wada M. Plant Signal Behav 5 1602-1606 (2010)
  81. The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson's Disease from the Han Population of Chinese Mainland. Zhang J, Zeng H, Zhu L, Deng L, Fang X, Deng X, Liang H, Tang C, Cao X, Lu Y, Li J, Ren X, Zuo W, Zhang X, Xu R. Mol. Neurobiol. 53 7119-7136 (2016)
  82. The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Gaur D, Singh P, Guleria J, Gupta A, Kaur S, Sharma D. Genetics 215 683-698 (2020)
  83. Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Meng W, Clerico EM, McArthur N, Gierasch LM. Proc. Natl. Acad. Sci. U.S.A. 115 11970-11975 (2018)
  84. Characterisation of the heat shock protein Tid and its involvement in stress response regulation in Apis cerana. Li G, Zhang C, Wang H, Xia W, Zhang X, Liu Z, Wang Y, Zhao H, Xu B. Front Physiol 13 1068873 (2022)
  85. Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Farhan SMK, Howrigan DP, Abbott LE, Klim JR, Topp SD, Byrnes AE, Churchhouse C, Phatnani H, Smith BN, Rampersaud E, Wu G, Wuu J, Shatunov A, Iacoangeli A, Al Khleifat A, Mordes DA, Ghosh S, ALSGENS Consortium, FALS Consortium, Project MinE Consortium, CReATe Consortium, Eggan K, Rademakers R, McCauley JL, Schüle R, Züchner S, Benatar M, Taylor JP, Nalls M, Gotkine M, Shaw PJ, Morrison KE, Al-Chalabi A, Traynor B, Shaw CE, Goldstein DB, Harms MB, Daly MJ, Neale BM. Nat. Neurosci. 22 1966-1974 (2019)
  86. Exploration of the truncated cytosolic Hsp70 in plants - unveiling the diverse T1 lineage and the conserved T2 lineage. Chen YJ, Cheng SY, Liu CH, Tsai WC, Wu HH, Huang MD. Front Plant Sci 14 1279540 (2023)
  87. Exploring the Alternative Conformation of a Known Protein Structure Based on Contact Map Prediction. Li J, Wang L, Zhu Z, Song C. J Chem Inf Model 64 301-315 (2024)
  88. General Structural and Functional Features of Molecular Chaperones. Edkins AL, Boshoff A. Adv Exp Med Biol 1340 11-73 (2021)
  89. Growth-Regulated Hsp70 Phosphorylation Regulates Stress Responses and Prion Maintenance. Kao CH, Ryu SW, Kim MJ, Wen X, Wimalarathne O, Paull TT. Mol Cell Biol 40 e00628-19 (2020)
  90. Hsp70 Inhibits the Replication of Fowl Adenovirus Serotype 4 by Suppressing Viral Hexon with the Assistance of DnaJC7. Cao J, Liu S, Liu M, Wang S, Bi Z, Fan W, Shi Z, Song S, Yan L. J Virol 96 e0080722 (2022)
  91. Human proteins curing yeast prions. Wu S, Edskes HK, Wickner RB. Proc Natl Acad Sci U S A 120 e2314781120 (2023)
  92. Leveraging the Structure of DNAJA1 to Discover Novel Potential Pancreatic Cancer Therapies. Roth HE, De Lima Leite A, Palermo NY, Powers R. Biomolecules 12 1391 (2022)
  93. RNA-sequencing Reveals Differentially Expressed Genes of Laying Hens Fed Baihu Decoction Under Heat Shock. Lu T, Li L, Li Y, Li X. J Poult Sci 60 2023012 (2023)
  94. Structural inventory of cotranslational protein folding by the eukaryotic RAC complex. Kišonaitė M, Wild K, Lapouge K, Gesé GV, Kellner N, Hurt E, Sinning I. Nat Struct Mol Biol (2023)
  95. The complex of Fas-associated factor 1 with Hsp70 stabilizes the adherens junction integrity by suppressing RhoA activation. Song S, Park JK, Shin SC, Lee JJ, Hong SK, Song IK, Kim B, Song EJ, Lee KJ, Kim EE. J Mol Cell Biol 14 mjac037 (2022)
  96. The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70. Velasco-Carneros L, Cuéllar J, Dublang L, Santiago C, Maréchal JD, Martín-Benito J, Maestro M, Fernández-Higuero JÁ, Orozco N, Moro F, Valpuesta JM, Muga A. Nat Commun 14 5436 (2023)
  97. Two-step mechanism of J-domain action in driving Hsp70 function. Tomiczek B, Delewski W, Nierzwicki L, Stolarska M, Grochowina I, Schilke B, Dutkiewicz R, Uzarska MA, Ciesielski SJ, Czub J, Craig EA, Marszalek J. PLoS Comput Biol 16 e1007913 (2020)