2qop Citations

Crystal structure of the transcriptional regulator AcrR from Escherichia coli.

J Mol Biol 374 591-603 (2007)
Cited: 52 times
EuropePMC logo PMID: 17950313

Abstract

The AcrAB multidrug efflux pump, which belongs to the resistance nodulation division (RND) family, recognizes and extrudes a wide range of antibiotics and chemotherapeutic agents and causes the intrinsic antibiotic resistance in Escherichia coli. The expression of AcrAB is controlled by the transcriptional regulator AcrR, whose open reading frame is located 141 bp upstream of the acrAB operon. To understand the structural basis of AcrR regulation, we have determined the crystal structure of AcrR to 2.55-A resolution, revealing a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators. Each monomer of AcrR forms a multientrance pocket of 350 A(3) in the ligand-binding domain. The ligand-binding pocket is surrounded with mostly hydrophobic residues. In addition, a completely buried negatively charged glutamate, expected to be critical for drug binding, is located at the center of the binding pocket. The crystal structure provides novel insight into the mechanisms of ligand binding and AcrR regulation.

Reviews - 2qop mentioned but not cited (1)

  1. The TetR family of regulators. Cuthbertson L, Nodwell JR. Microbiol Mol Biol Rev 77 440-475 (2013)

Articles - 2qop mentioned but not cited (2)

  1. Conformational change of the AcrR regulator reveals a possible mechanism of induction. Gu R, Li M, Su CC, Long F, Routh MD, Yang F, McDermott G, Yu EW. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 584-588 (2008)
  2. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. Manjasetty BA, Halavaty AS, Luan CH, Osipiuk J, Mulligan R, Kwon K, Anderson WF, Joachimiak A. J. Struct. Biol. 194 18-28 (2016)


Reviews citing this publication (10)

  1. Efflux-mediated drug resistance in bacteria: an update. Li XZ, Nikaido H. Drugs 69 1555-1623 (2009)
  2. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Li XZ, Plésiat P, Nikaido H. Clin. Microbiol. Rev. 28 337-418 (2015)
  3. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Sun J, Deng Z, Yan A. Biochem. Biophys. Res. Commun. 453 254-267 (2014)
  4. Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators. Routh MD, Su CC, Zhang Q, Yu EW. Biochim. Biophys. Acta 1794 844-851 (2009)
  5. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Deng W, Li C, Xie J. Cell. Signal. 25 1608-1613 (2013)
  6. Multidrug efflux pumps: structure, function and regulation. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF. Nat. Rev. Microbiol. 16 523-539 (2018)
  7. MD recognition by MDR gene regulators. Wade H. Curr. Opin. Struct. Biol. 20 489-496 (2010)
  8. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Adv. Enzymol. Relat. Areas Mol. Biol. 77 109-146 (2011)
  9. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Sionov RV, Steinberg D. Microorganisms 10 1239 (2022)
  10. Mechanisms and biotechnological applications of transcription factors. He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Synth Syst Biotechnol 8 565-577 (2023)

Articles citing this publication (39)

  1. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. Hernández A, Ruiz FM, Romero A, Martínez JL. PLoS Pathog. 7 e1002103 (2011)
  2. Structural basis for the transcriptional regulation of membrane lipid homeostasis. Miller DJ, Zhang YM, Subramanian C, Rock CO, White SW. Nat. Struct. Mol. Biol. 17 971-975 (2010)
  3. Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Bolla JR, Do SV, Long F, Dai L, Su CC, Lei HT, Chen X, Gerkey JE, Murphy DC, Rajashankar KR, Zhang Q, Yu EW. Nucleic Acids Res. 40 9340-9355 (2012)
  4. Structures of BmrR-drug complexes reveal a rigid multidrug binding pocket and transcription activation through tyrosine expulsion. Newberry KJ, Huffman JL, Miller MC, Vazquez-Laslop N, Neyfakh AA, Brennan RG. J. Biol. Chem. 283 26795-26804 (2008)
  5. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. J. Biol. Chem. 287 30755-30768 (2012)
  6. Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW. Protein Sci. 20 712-723 (2011)
  7. RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease. Ricci V, Blair JM, Piddock LJ. J. Antimicrob. Chemother. 69 643-650 (2014)
  8. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification. Laehnemann D, Peña-Miller R, Rosenstiel P, Beardmore R, Jansen G, Schulenburg H. Genome Biol Evol 6 1287-1301 (2014)
  9. Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli. Watanabe R, Doukyu N. AMB Express 2 58 (2012)
  10. Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa. Ballok AE, Bahl CD, Dolben EL, Lindsay AK, St Laurent JD, Hogan DA, Madden DR, O'Toole GA. J. Bacteriol. 194 5315-5324 (2012)
  11. Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Ricci V, Busby SJ, Piddock LJ. Antimicrob. Agents Chemother. 56 6037-6040 (2012)
  12. Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA. Yang S, Gao Z, Li T, Yang M, Zhang T, Dong Y, He ZG. J. Biol. Chem. 288 23687-23695 (2013)
  13. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Yamanaka Y, Shimada T, Yamamoto K, Ishihama A. Microbiology (Reading, Engl.) 162 1253-1264 (2016)
  14. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity. Peters KM, Brooks BE, Schumacher MA, Skurray RA, Brennan RG, Brown MH. PLoS ONE 6 e15974 (2011)
  15. SCO4008, a putative TetR transcriptional repressor from Streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. J. Mol. Biol. 425 3289-3300 (2013)
  16. Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Delmar JA, Chou TH, Wright CC, Licon MH, Doh JK, Radhakrishnan A, Kumar N, Lei HT, Bolla JR, Rajashankar KR, Su CC, Purdy GE, Yu EW. J. Biol. Chem. 290 28559-28574 (2015)
  17. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Hassan KA, Elbourne LD, Li L, Gamage HK, Liu Q, Jackson SM, Sharples D, Kolstø AB, Henderson PJ, Paulsen IT. Front Microbiol 6 333 (2015)
  18. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E. J. Biol. Chem. 290 12165-12183 (2015)
  19. A scalable metabolite supplementation strategy against antibiotic resistant pathogen Chromobacterium violaceum induced by NAD+/NADH+ imbalance. Banerjee D, Parmar D, Bhattacharya N, Ghanate AD, Panchagnula V, Raghunathan A. BMC Syst Biol 11 51 (2017)
  20. Crystal structure of a putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) reveals an unusual dimer among TetR family proteins. Filippova EV, Chruszcz M, Cymborowski M, Gu J, Savchenko A, Edwards A, Minor W. J. Struct. Funct. Genomics 12 149-157 (2011)
  21. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302. Chou TH, Delmar JA, Wright CC, Kumar N, Radhakrishnan A, Doh JK, Licon MH, Bolla JR, Lei HT, Rajashankar KR, Su CC, Purdy GE, Yu EW. Protein Sci. 24 1942-1955 (2015)
  22. Crystal structure of the transcriptional regulator Rv1219c of Mycobacterium tuberculosis. Kumar N, Radhakrishnan A, Wright CC, Chou TH, Lei HT, Bolla JR, Tringides ML, Rajashankar KR, Su CC, Purdy GE, Yu EW. Protein Sci. 23 423-432 (2014)
  23. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Front Cell Infect Microbiol 8 270 (2018)
  24. Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from Streptomyces coelicolor A3(2). Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. FEBS Lett. 588 4311-4318 (2014)
  25. Clonal Interference and Mutation Bias in Small Bacterial Populations in Droplets. Ruelens P, de Visser JAGM. Genes (Basel) 12 223 (2021)
  26. Crystal Structure of Fad35R from Mycobacterium tuberculosis H37Rv in the Apo-State. Singh AK, Manjasetty B, Balasubramani GL, Koul S, Kaushik A, Ekka MK, Singh V, Kumaran S. PLoS ONE 10 e0124333 (2015)
  27. Development and selection of low-level multi-drug resistance over an extended range of sub-inhibitory ciprofloxacin concentrations in Escherichia coli. Ching C, Zaman MH. Sci Rep 10 8754 (2020)
  28. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Jiao YN, Chen H, Gao RX, Zhu YG, Rensing C. Chemosphere 184 53-61 (2017)
  29. Escherichia coli from Human Wounds: Analysis of Resistance to β-Lactams and Expression of RND Efflux Pumps. Rihacek M, Kuthanova M, Splichal Z, Adam V, Hrazdilova K, Vesely R, Zurek L, Cihalova K. Infect Drug Resist 16 7365-7375 (2023)
  30. Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Jin CZ, Zhuo Y, Wu X, Ko SR, Li T, Jin FJ, Ahn CY, Oh HM, Lee HG, Jin L. Microorganisms 8 (2020)
  31. Mutations in AcrR and RNA Polymerase Confer High-Level Resistance to Psoralen-UVA Irradiation. Worley TK, Weber EA, Acott JD, Shimpi RS, Cole JM, Courcelle CT, Courcelle J. J Bacteriol 205 e0012623 (2023)
  32. New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature. Jin L, Cui C, Zhang C, Ko SR, Li T, Jin FJ, Ahn CY, Oh HM, Lee HG. Int J Mol Sci 23 10856 (2022)
  33. RegulonDB v12.0: a comprehensive resource of transcriptional regulation in E. coli K-12. Salgado H, Gama-Castro S, Lara P, Mejia-Almonte C, Alarcón-Carranza G, López-Almazo AG, Betancourt-Figueroa F, Peña-Loredo P, Alquicira-Hernández S, Ledezma-Tejeida D, Arizmendi-Zagal L, Mendez-Hernandez F, Diaz-Gomez AK, Ochoa-Praxedis E, Muñiz-Rascado LJ, García-Sotelo JS, Flores-Gallegos FA, Gómez L, Bonavides-Martínez C, Del Moral-Chávez VM, Hernández-Alvarez AJ, Santos-Zavaleta A, Capella-Gutierrez S, Gelpi JL, Collado-Vides J. Nucleic Acids Res 52 D255-D264 (2024)
  34. SCO3129, a TetR family regulator, is responsible for osmotic stress in Streptomyces coelicolor. He X, Li H, Pan Y, Wang L, Tan H, Liu G. Synth Syst Biotechnol 3 261-267 (2018)
  35. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. Colclough AL, Scadden J, Blair JMA. BMC Genomics 20 731 (2019)
  36. The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification. Harmon DE, Ruiz C. mSphere 7 e0047422 (2022)
  37. The crystal structure of AcrR from Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism. Kang SM, Kim DH, Jin C, Ahn HC, Lee BJ. FEBS Open Bio 9 1713-1725 (2019)
  38. The multidrug efflux pump regulator AcrR directly represses motility in Escherichia coli. Maldonado J, Czarnecka B, Harmon DE, Ruiz C. mSphere 8 e0043023 (2023)
  39. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. Free Radic Biol Med 177 120-131 (2021)