2mga Citations

High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin.

J Mol Biol 234 140-55 (1993)
Related entries: 1mob, 1moc, 1mod, 2mgb, 2mgc, 2mgd, 2mge, 2mgf, 2mgg, 2mgh, 2mgi, 2mgj, 2mgk, 2mgl, 2mgm

Cited: 160 times
EuropePMC logo PMID: 8230194

Abstract

The highly conserved distal histidine residue (His64) of sperm whale myoglobin modulates the affinity of ligands. In an effort to fully characterize the effects of mutating residue 64, we have determined the high-resolution crystal structures of the Gly64, Val64, Leu64, Thr64 and Gln64 mutants in several liganded forms. Metmyoglobins with hydrophobic substitutions at residue 64 (Val64 and Leu64) lack a water molecule at the sixth coordination position, while those with polar amino acid residues at this position (wild-type and Gln64) retain a covalently bound water molecule. In the Thr64 mutant, the bound water position is only partially occupied. In contrast, mutating the distal histidine residue to glycine does not cause loss of the coordinated water molecule, because the hydrogen bond from the imidazole side-chain is replaced by one from a well-ordered solvent water molecule. Differences in water structure around the distal pocket are apparent also in the structures of deoxymyoglobin mutants. The water molecule that is hydrogen-bonded to the N epsilon atom of histidine 64 in wild-type deoxymyoglobin is not found in any of the position 64 mutant structures that were determined. Comparison of the carbonmonoxy structures of wild-type, Gly64, Leu64 and Gln64 myoglobins in the P6 crystal form shows that the conformation of the Fe-C-O complex is nearly linear and is independent of the identity of the amino acid residue at position 64. However, the effect of CO binding on the conformation of residue 64 is striking. Superposition of deoxy and carbonmonoxy structures reveals significant displacements of the residue 64 side-chain in the wild-type and Gln64 myoglobins, but no displacement in the Leu64 mutant. These detailed structural studies provide key insights into the mechanisms of ligand binding and discrimination in myoglobin.

Articles - 2mga mentioned but not cited (2)



Reviews citing this publication (17)

  1. Nonvertebrate hemoglobins: structural bases for reactivity. Bolognesi M, Bordo D, Rizzi M, Tarricone C, Ascenzi P. Prog. Biophys. Mol. Biol. 68 29-68 (1997)
  2. Fast protein dynamics probed with infrared vibrational echo experiments. Fayer MD. Annu Rev Phys Chem 52 315-356 (2001)
  3. Structure and dynamics of the water around myoglobin. Phillips GN, Pettitt BM. Protein Sci. 4 149-158 (1995)
  4. The structure and function of plant hemoglobins. Hoy JA, Hargrove MS. Plant Physiol. Biochem. 46 371-379 (2008)
  5. Structural dynamics of myoglobin. Brunori M. Biophys. Chem. 86 221-230 (2000)
  6. Nature of the FeO2 bonding in myoglobin and hemoglobin: A new molecular paradigm. Shikama K. Prog. Biophys. Mol. Biol. 91 83-162 (2006)
  7. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Tsai AL, Martin E, Berka V, Olson JS. Antioxid. Redox Signal. 17 1246-1263 (2012)
  8. Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Samuni U, Dantsker D, Roche CJ, Friedman JM. Gene 398 234-248 (2007)
  9. Protein engineering strategies for designing more stable hemoglobin-based blood substitutes. Olson JS, Eich RF, Smith LP, Warren JJ, Knowles BC. Artif Cells Blood Substit Immobil Biotechnol 25 227-241 (1997)
  10. Structure-function relationships in unusual nonvertebrate globins. Shikama K, Matsuoka A. Crit. Rev. Biochem. Mol. Biol. 39 217-259 (2004)
  11. Human haemoglobin: a new paradigm for oxygen binding involving two types of alphabeta contacts. Shikama K, Matsuoka A. Eur. J. Biochem. 270 4041-4051 (2003)
  12. Small ligand-globin interactions: reviewing lessons derived from computer simulation. Capece L, Boechi L, Perissinotti LL, Arroyo-Mañez P, Bikiel DE, Smulevich G, Marti MA, Estrin DA. Biochim. Biophys. Acta 1834 1722-1738 (2013)
  13. Occurrence and formation of endogenous histidine hexa-coordination in cold-adapted hemoglobins. Merlino A, Howes BD, Prisco Gd, Verde C, Smulevich G, Mazzarella L, Vergara A. IUBMB Life 63 295-303 (2011)
  14. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Chem. Rev. 118 10840-11022 (2018)
  15. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Chem Rev 122 11974-12045 (2022)
  16. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Olson JS. Antioxid Redox Signal 32 228-246 (2020)
  17. Moving beyond static snapshots: Protein dynamics and the Protein Data Bank. Miller MD, Phillips GN. J Biol Chem 296 100749 (2021)

Articles citing this publication (141)

  1. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Vojtechovský J, Chu K, Berendzen J, Sweet RM, Schlichting I. Biophys. J. 77 2153-2174 (1999)
  2. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK. Proc. Natl. Acad. Sci. U.S.A. 95 15177-15182 (1998)
  3. Crystal structure of photolysed carbonmonoxy-myoglobin. Schlichting I, Berendzen J, Phillips GN, Sweet RM. Nature 371 808-812 (1994)
  4. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Higuchi Y, Yagi T, Yasuoka N. Structure 5 1671-1680 (1997)
  5. Residence times of water molecules in the hydration sites of myoglobin. Makarov VA, Andrews BK, Smith PE, Pettitt BM. Biophys. J. 79 2966-2974 (2000)
  6. Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O. Lim M, Jackson TA, Anfinrud PA. Science 269 962-966 (1995)
  7. Folding of cytochrome c initiated by submillisecond mixing. Takahashi S, Yeh SR, Das TK, Chan CK, Gottfried DS, Rousseau DL. Nat. Struct. Biol. 4 44-50 (1997)
  8. The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Brunori M, Vallone B, Cutruzzola F, Travaglini-Allocatelli C, Berendzen J, Chu K, Sweet RM, Schlichting I. Proc. Natl. Acad. Sci. U.S.A. 97 2058-2063 (2000)
  9. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin. Johnson JB, Lamb DC, Frauenfelder H, Müller JD, McMahon B, Nienhaus GU, Young RD. Biophys. J. 71 1563-1573 (1996)
  10. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants. Hargrove MS, Barry JK, Brucker EA, Berry MB, Phillips GN, Olson JS, Arredondo-Peter R, Dean JM, Klucas RV, Sarath G. J. Mol. Biol. 266 1032-1042 (1997)
  11. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. Protein Sci. 16 1708-1719 (2007)
  12. Myoglobin as a model system for designing heme protein based blood substitutes. Dou Y, Maillett DH, Eich RF, Olson JS. Biophys. Chem. 98 127-148 (2002)
  13. Unveiling functional protein motions with picosecond x-ray crystallography and molecular dynamics simulations. Hummer G, Schotte F, Anfinrud PA. Proc. Natl. Acad. Sci. U.S.A. 101 15330-15334 (2004)
  14. Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study. Makarov VA, Feig M, Andrews BK, Pettitt BM. Biophys. J. 75 150-158 (1998)
  15. Picosecond time-resolved X-ray crystallography: probing protein function in real time. Schotte F, Soman J, Olson JS, Wulff M, Anfinrud PA. J. Struct. Biol. 147 235-246 (2004)
  16. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Tarricone C, Galizzi A, Coda A, Ascenzi P, Bolognesi M. Structure 5 497-507 (1997)
  17. Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Müller JD, McMahon BH, Chien EY, Sligar SG, Nienhaus GU. Biophys. J. 77 1036-1051 (1999)
  18. Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Zhang W, Phillips GN. Structure 11 1097-1110 (2003)
  19. Protein Ligation of the Photosynthetic Oxygen-Evolving Center. Debus RJ. Coord Chem Rev 252 244-258 (2008)
  20. Controlling ligand binding in myoglobin by mutagenesis. Draghi F, Miele AE, Travaglini-Allocatelli C, Vallone B, Brunori M, Gibson QH, Olson JS. J. Biol. Chem. 277 7509-7519 (2002)
  21. Statistical and molecular dynamics studies of buried waters in globular proteins. Park S, Saven JG. Proteins 60 450-463 (2005)
  22. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. De Baere I, Perutz MF, Kiger L, Marden MC, Poyart C. Proc. Natl. Acad. Sci. U.S.A. 91 1594-1597 (1994)
  23. Reactions of sperm whale myoglobin with hydrogen peroxide. Effects of distal pocket mutations on the formation and stability of the ferryl intermediate. Alayash AI, Ryan BA, Eich RF, Olson JS, Cashon RE. J. Biol. Chem. 274 2029-2037 (1999)
  24. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Bordeaux M, Tyagi V, Fasan R. Angew. Chem. Int. Ed. Engl. 54 1744-1748 (2015)
  25. Dioxygen affinity in heme proteins investigated by computer simulation. Marti MA, Crespo A, Capece L, Boechi L, Bikiel DE, Scherlis DA, Estrin DA. J. Inorg. Biochem. 100 761-770 (2006)
  26. A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation. Erbil WK, Price MS, Wemmer DE, Marletta MA. Proc. Natl. Acad. Sci. U.S.A. 106 19753-19760 (2009)
  27. Distal histidine stabilizes bound O2 and acts as a gate for ligand entry in both subunits of adult human hemoglobin. Birukou I, Schweers RL, Olson JS. J. Biol. Chem. 285 8840-8854 (2010)
  28. Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Brucker EA, Olson JS, Ikeda-Saito M, Phillips GN. Proteins 30 352-356 (1998)
  29. Temperature-dependent studies of NO recombination to heme and heme proteins. Ionascu D, Gruia F, Ye X, Yu A, Rosca F, Beck C, Demidov A, Olson JS, Champion PM. J. Am. Chem. Soc. 127 16921-16934 (2005)
  30. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron. Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB. J. Am. Chem. Soc. 131 18119-18128 (2009)
  31. Reconstructing the protein-water interface. Makarov VA, Andrews BK, Pettitt BM. Biopolymers 45 469-478 (1998)
  32. Residues in the distal heme pocket of neuroglobin. Implications for the multiple ligand binding steps. Uno T, Ryu D, Tsutsumi H, Tomisugi Y, Ishikawa Y, Wilkinson AJ, Sato H, Hayashi T. J Biol Chem 279 5886-5893 (2004)
  33. NMR reveals hydrogen bonds between oxygen and distal histidines in oxyhemoglobin. Lukin JA, Simplaceanu V, Zou M, Ho NT, Ho C. Proc. Natl. Acad. Sci. U.S.A. 97 10354-10358 (2000)
  34. Structural and thermodynamic analysis of the binding of solvent at internal sites in T4 lysozyme. Xu J, Baase WA, Quillin ML, Baldwin EP, Matthews BW. Protein Sci. 10 1067-1078 (2001)
  35. Water and ligand entry in myoglobin: assessing the speed and extent of heme pocket hydration after CO photodissociation. Goldbeck RA, Bhaskaran S, Ortega C, Mendoza JL, Olson JS, Soman J, Kliger DS, Esquerra RM. Proc. Natl. Acad. Sci. U.S.A. 103 1254-1259 (2006)
  36. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase. Li D, Stuehr DJ, Yeh SR, Rousseau DL. J. Biol. Chem. 279 26489-26499 (2004)
  37. Hemoglobin: a mechanism for the generation of hydroxyl radicals. Van Dyke BR, Saltman P. Free Radic. Biol. Med. 20 985-989 (1996)
  38. Trematode hemoglobins show exceptionally high oxygen affinity. Kiger L, Rashid AK, Griffon N, Haque M, Moens L, Gibson QH, Poyart C, Marden MC. Biophys. J. 75 990-998 (1998)
  39. Biophysical and kinetic characterization of HemAT, an aerotaxis receptor from Bacillus subtilis. Zhang W, Olson JS, Phillips GN. Biophys. J. 88 2801-2814 (2005)
  40. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants. Nienhaus K, Deng P, Olson JS, Warren JJ, Nienhaus GU. J. Biol. Chem. 278 42532-42544 (2003)
  41. Reaction of variant sperm-whale myoglobins with hydrogen peroxide: the effects of mutating a histidine residue in the haem distal pocket. Brittain T, Baker AR, Butler CS, Little RH, Lowe DJ, Greenwood C, Watmough NJ. Biochem. J. 326 ( Pt 1) 109-115 (1997)
  42. Bis-methionine ligation to heme iron in the streptococcal cell surface protein Shp facilitates rapid hemin transfer to HtsA of the HtsABC transporter. Ran Y, Zhu H, Liu M, Fabian M, Olson JS, Aranda R, Phillips GN, Dooley DM, Lei B. J. Biol. Chem. 282 31380-31388 (2007)
  43. Theoretical study of the distal-side steric and electrostatic effects on the vibrational characteristics of the FeCO unit of the carbonylheme proteins and their models. Kushkuley B, Stavrov SS. Biophys. J. 70 1214-1229 (1996)
  44. Ultrafast dynamics of diatomic ligand binding to nitrophorin 4. Benabbas A, Ye X, Kubo M, Zhang Z, Maes EM, Montfort WR, Champion PM. J. Am. Chem. Soc. 132 2811-2820 (2010)
  45. Phe-46(CD4) orients the distal histidine for hydrogen bonding to bound ligands in sperm whale myoglobin. Lai HH, Li T, Lyons DS, Phillips GN, Olson JS, Gibson QH. Proteins 22 322-339 (1995)
  46. Role of heme in the unfolding and assembly of myoglobin. Culbertson DS, Olson JS. Biochemistry 49 6052-6063 (2010)
  47. DevS oxy complex stability identifies this heme protein as a gas sensor in Mycobacterium tuberculosis dormancy. Ioanoviciu A, Meharenna YT, Poulos TL, Ortiz de Montellano PR. Biochemistry 48 5839-5848 (2009)
  48. Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. Travaglini Allocatelli C, Cutruzzolà F, Brancaccio A, Vallone B, Brunori M. FEBS Lett. 352 63-66 (1994)
  49. Coherence spectroscopy investigations of the low-frequency vibrations of heme: effects of protein-specific perturbations. Gruia F, Kubo M, Ye X, Ionascu D, Lu C, Poole RK, Yeh SR, Champion PM. J. Am. Chem. Soc. 130 5231-5244 (2008)
  50. Investigations of vibrational coherence in the low-frequency region of ferric heme proteins. Gruia F, Kubo M, Ye X, Champion PM. Biophys. J. 94 2252-2268 (2008)
  51. Structural characterization of ferric hemoglobins from three antarctic fish species of the suborder notothenioidei. Vergara A, Franzese M, Merlino A, Vitagliano L, Verde C, di Prisco G, Lee HC, Peisach J, Mazzarella L. Biophys. J. 93 2822-2829 (2007)
  52. The leghemoglobin proximal heme pocket directs oxygen dissociation and stabilizes bound heme. Kundu S, Snyder B, Das K, Chowdhury P, Park J, Petrich JW, Hargrove MS. Proteins 46 268-277 (2002)
  53. Dual nature of the distal histidine residue in the autoxidation reaction of myoglobin and hemoglobin comparison of the H64 mutants. Suzuki T, Watanabe YH, Nagasawa M, Matsuoka A, Shikama K. Eur. J. Biochem. 267 6166-6174 (2000)
  54. Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis. Nienhaus K, Knapp JE, Palladino P, Royer WE, Nienhaus GU. Biochemistry 46 14018-14031 (2007)
  55. Nonsteric factors dominate binding of nitric oxide, azide, imidazole, cyanide, and fluoride to the rhizobial heme-based oxygen sensor FixL. Winkler WC, Gonzalez G, Wittenberg JB, Hille R, Dakappagari N, Jacob A, Gonzalez LA, Gilles-Gonzalez MA. Chem. Biol. 3 841-850 (1996)
  56. On the origin of heme absorption band shifts and associated protein structural relaxation in myoglobin following flash photolysis. Franzen S, Boxer SG. J. Biol. Chem. 272 9655-9660 (1997)
  57. The effects of heme pocket hydrophobicity on the ligand binding dynamics in myoglobin as studied with leucine 29 mutants. Uchida T, Ishimori K, Morishima I. J. Biol. Chem. 272 30108-30114 (1997)
  58. Theoretical study of the electrostatic and steric effects on the spectroscopic characteristics of the metal-ligand unit of heme proteins. 2. C-O vibrational frequencies, 17O isotropic chemical shifts, and nuclear quadrupole coupling constants. Kushkuley B, Stavrov SS. Biophys. J. 72 899-912 (1997)
  59. Distal heme pocket regulation of ligand binding and stability in soybean leghemoglobin. Kundu S, Hargrove MS. Proteins 50 239-248 (2003)
  60. Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Marmo Moreira L, Lima Poli A, Costa-Filho AJ, Imasato H. Biophys. Chem. 124 62-72 (2006)
  61. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes. Collman JP, Decréau RA, Lin H, Hosseini A, Yang Y, Dey A, Eberspacher TA. Proc. Natl. Acad. Sci. U.S.A. 106 7320-7323 (2009)
  62. The distal residue-CO interaction in carbonmonoxy myoglobins: a molecular dynamics study of two distal histidine tautomers. Jewsbury P, Kitagawa T. Biophys. J. 67 2236-2250 (1994)
  63. African elephant myoglobin with an unusual autoxidation behavior: comparison with the H64Q mutant of sperm whale myoglobin. Tada T, Watanabe YH, Matsuoka A, Ikeda-Saito M, Imai K, Ni-hei Y, Shikama K. Biochim. Biophys. Acta 1387 165-176 (1998)
  64. Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations. Zahran ZN, Chooback L, Copeland DM, West AH, Richter-Addo GB. J. Inorg. Biochem. 102 216-233 (2008)
  65. Determination of ligand pathways in globins: apolar tunnels versus polar gates. Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. J. Biol. Chem. 287 33163-33178 (2012)
  66. Structural and spectroscopic studies of azide complexes of horse heart myoglobin and the His-64-->Thr variant. Maurus R, Bogumil R, Nguyen NT, Mauk AG, Brayer G. Biochem. J. 332 ( Pt 1) 67-74 (1998)
  67. Theoretical insight into the hydroxylamine oxidoreductase mechanism. Fernández ML, Estrin DA, Bari SE. J. Inorg. Biochem. 102 1523-1530 (2008)
  68. Pentacoordination of the heme iron of Arthromyces ramosus peroxidase shown by a 1.8 A resolution crystallographic study at pH 4.5. Kunishima N, Amada F, Fukuyama K, Kawamoto M, Matsunaga T, Matsubara H. FEBS Lett. 378 291-294 (1996)
  69. The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains. Moskvin OV, Gilles-Gonzalez MA, Gomelsky M. J. Bacteriol. 192 5253-5256 (2010)
  70. Variable pi-bonding in iron(II) porphyrinates with nitrite, CO, and tert-butyl isocyanide: characterization of [Fe(TpivPP)(NO2)(CO)]-. Nasri H, Ellison MK, Shang M, Schulz CE, Scheidt WR. Inorg Chem 43 2932-2942 (2004)
  71. Water may inhibit oxygen binding in hemoprotein models. Collman JP, Decréau RA, Dey A, Yang Y. Proc. Natl. Acad. Sci. U.S.A. 106 4101-4105 (2009)
  72. A method for probing the topography and interactions of proteins: footprinting of myoglobin. Zhong M, Lin L, Kallenbach NR. Proc. Natl. Acad. Sci. U.S.A. 92 2111-2115 (1995)
  73. Assignment of the hyperfine-shifted 1H-NMR signals of the heme in the oxygen sensor FixL from Rhizobium meliloti. Bertolucci C, Ming LJ, Gonzalez G, Gilles-Gonzalez MA. Chem. Biol. 3 561-566 (1996)
  74. Blocking the gate to ligand entry in human hemoglobin. Birukou I, Soman J, Olson JS. J. Biol. Chem. 286 10515-10529 (2011)
  75. Correlation between hemichrome stability and the root effect in tetrameric hemoglobins. Vergara A, Franzese M, Merlino A, Bonomi G, Verde C, Giordano D, di Prisco G, Lee HC, Peisach J, Mazzarella L. Biophys. J. 97 866-874 (2009)
  76. Hell's Gate globin I: an acid and thermostable bacterial hemoglobin resembling mammalian neuroglobin. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, Newhouse EI, Rahim RA, Favier F, Didierjean C, Sousa EH, Stott MB, Dunfield PF, Gonzalez G, Gilles-Gonzalez MA, Najimudin N, Alam M. FEBS Lett. 585 3250-3258 (2011)
  77. Heme binding in gas-phase holo-myoglobin cations: distal becomes proximal? Enyenihi AA, Yang H, Ytterberg AJ, Lyutvinskiy Y, Zubarev RA. J. Am. Soc. Mass Spectrom. 22 1763-1770 (2011)
  78. The carbon monoxide stretching modes in camphor-bound cytochrome P-450cam. The effect of solvent conditions, temperature, and pressure. Schulze H, Ristau O, Jung C. Eur. J. Biochem. 224 1047-1055 (1994)
  79. A computational study of water and CO migration sites and channels inside myoglobin. Lapelosa M, Abrams CF. J Chem Theory Comput 9 1265-1271 (2013)
  80. Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water. Ouellet YH, Daigle R, Lagüe P, Dantsker D, Milani M, Bolognesi M, Friedman JM, Guertin M. J. Biol. Chem. 283 27270-27278 (2008)
  81. Functional differentiation in trematode hemoglobin isoforms. Rashid AK, Weber RE. Eur. J. Biochem. 260 717-725 (1999)
  82. Kinetic spectroscopy of heme hydration and ligand binding in myoglobin and isolated hemoglobin chains: an optical window into heme pocket water dynamics. Esquerra RM, López-Peña I, Tipgunlakant P, Birukou I, Nguyen RL, Soman J, Olson JS, Kliger DS, Goldbeck RA. Phys Chem Chem Phys 12 10270-10278 (2010)
  83. Optical detection of disordered water within a protein cavity. Goldbeck RA, Pillsbury ML, Jensen RA, Mendoza JL, Nguyen RL, Olson JS, Soman J, Kliger DS, Esquerra RM. J. Am. Chem. Soc. 131 12265-12272 (2009)
  84. Oxygen affinity controlled by dynamical distal conformations: the soybean leghemoglobin and the Paramecium caudatum hemoglobin cases. Martí MA, Capece L, Bikiel DE, Falcone B, Estrin DA. Proteins 68 480-487 (2007)
  85. Straight-chain alkyl isocyanides open the distal histidine gate in crystal structures of myoglobin . Smith RD, Blouin GC, Johnson KA, Phillips GN, Olson JS. Biochemistry 49 4977-4986 (2010)
  86. Structural characterization of the myoglobin active site using infrared crystallography. Sage JT, Jee W. J. Mol. Biol. 274 21-26 (1997)
  87. Apoglobin Stability Is the Major Factor Governing both Cell-free and in Vivo Expression of Holomyoglobin. Samuel PP, Smith LP, Phillips GN, Olson JS. J. Biol. Chem. 290 23479-23495 (2015)
  88. Correlation of carbon monoxide association rates and the position of absorption band III in hemoproteins. Kiger L, Stetzkowski-Marden F, Poyart C, Marden MC. Eur. J. Biochem. 228 665-668 (1995)
  89. Mutational study of the bacterial hemoglobin distal heme pocket. Verma S, Patel S, Kaur R, Chung YT, Duk BT, Dikshit KL, Stark BC, Webster DA. Biochem. Biophys. Res. Commun. 326 290-297 (2005)
  90. Redox reactivity of the heme Fe3+/Fe 2+ couple in native myoglobins and mutants with peroxidase-like activity. Battistuzzi G, Bellei M, Casella L, Bortolotti CA, Roncone R, Monzani E, Sola M. J. Biol. Inorg. Chem. 12 951-958 (2007)
  91. Substrate interactions in cytochrome P-450: correlation between carbon-13 nuclear magnetic resonance chemical shifts and C-O vibrational frequencies. Legrand N, Bondon A, Simonneaux G, Jung C, Gill E. FEBS Lett. 364 152-156 (1995)
  92. The pH dependence of heme pocket hydration and ligand rebinding kinetics in photodissociated carbonmonoxymyoglobin. Esquerra RM, Jensen RA, Bhaskaran S, Pillsbury ML, Mendoza JL, Lintner BW, Kliger DS, Goldbeck RA. J. Biol. Chem. 283 14165-14175 (2008)
  93. Concerted movement of side chains in the haem vicinity observed on ligand binding in cytochrome c' from rhodobacter capsulatus. Tahirov TH, Misaki S, Meyer TE, Cusanovich MA, Higuchi Y, Yasuoka N. Nat. Struct. Biol. 3 459-464 (1996)
  94. Detailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO. Alam SL, Volkman BF, Markley JL, Satterlee JD. J. Biomol. NMR 11 119-133 (1998)
  95. H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG. Byer AS, Shepard EM, Ratzloff MW, Betz JN, King PW, Broderick WE, Broderick JB. J Biol Inorg Chem 24 783-792 (2019)
  96. Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS): effects of oligomeric dissociation. Moreira LM, Santiago PS, de Almeida EV, Tabak M. Colloids Surf B Biointerfaces 61 153-163 (2008)
  97. A myoglobin mutant designed to mimic the oxygen-avid Ascaris suum hemoglobin: elucidation of the distal hydrogen bonding network by solution NMR. Zhang W, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN. Biophys. J. 73 1019-1030 (1997)
  98. Efficient conversion of primary azides to aldehydes catalyzed by active site variants of myoglobin. Giovani S, Singh R, Fasan R. Chem Sci 7 234-239 (2016)
  99. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus. Giordano D, Vergara A, Lee HC, Peisach J, Balestrieri M, Mazzarella L, Parisi E, di Prisco G, Verde C. Gene 406 58-68 (2007)
  100. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain. Sugimoto T, Unno M, Shiro Y, Dou Y, Ikeda-Saito M. Biophys. J. 75 2188-2194 (1998)
  101. Solution 1H-NMR structure of the heme cavity in the low-affinity state for the allosteric monomeric cyano-met hemoglobins from Chironomus thummi thummi. Comparison to the crystal structure. Zhang W, La Mar GN, Gersonde K. Eur. J. Biochem. 237 841-853 (1996)
  102. The complex of apomyoglobin with the fluorescent dye coumarin 153. Chowdhury PK, Halder M, Sanders L, Arnold RA, Liu Y, Armstrong DW, Kundu S, Hargrove MS, Song X, Petrich JW. Photochem. Photobiol. 79 440-446 (2004)
  103. Distal residue-CO interaction in carbonmonoxy myoglobins: a molecular dynamics study of three distal mutants. Jewsbury P, Kitagawa T. Biophys. J. 68 1283-1294 (1995)
  104. Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins. Nguyen BL, Pettitt BM. J Chem Theory Comput 11 1399-1409 (2015)
  105. Introduction of a new regulatory mechanism into human hemoglobin. Fronticelli C, Bobofchak KM, Karavitis M, Sanna MT, Brinigar WS. Biophys. Chem. 98 115-126 (2002)
  106. Novel FixL homologues in Chlamydomonas reinhardtii bind heme and O(2). Murthy UM, Wecker MS, Posewitz MC, Gilles-Gonzalez MA, Ghirardi ML. FEBS Lett. 586 4282-4288 (2012)
  107. Supramolecular dioxygen receptors composed of an anionic water-soluble porphinatoiron(II) and cyclodextrin dimers. Kano K, Chimoto S, Tamaki M, Itoh Y, Kitagishi H. Dalton Trans 41 453-461 (2012)
  108. Volume and enthalpy profiles of CO rebinding to horse heart myoglobin. Miksovská J, Day JH, Larsen RW. J. Biol. Inorg. Chem. 8 621-625 (2003)
  109. Alpha-subunit oxidation in T-state crystals of a sebacyl cross-linked human hemoglobin with unusual autoxidation properties. Ji X, Karavitis M, Razynska A, Kwansa H, Vásquez G, Fronticelli C, Bucci E, Gilliland GL. Biophys. Chem. 70 21-34 (1998)
  110. HydG, the "dangler" iron, and catalytic production of free CO and CN-: implications for [FeFe]-hydrogenase maturation. Shepard EM, Impano S, Duffus BR, Pagnier A, Duschene KS, Betz JN, Byer AS, Galambas A, McDaniel EC, Watts H, McGlynn SE, Peters JW, Broderick WE, Broderick JB. Dalton Trans 50 10405-10422 (2021)
  111. Predicting Reactive Cysteines with Implicit-Solvent-Based Continuous Constant pH Molecular Dynamics in Amber. Harris RC, Liu R, Shen J. J Chem Theory Comput 16 3689-3698 (2020)
  112. Recombinant [Phe(beta)63]hemoglobin shows rapid oxidation of the beta chains and low-affinity, non-cooperative oxygen binding to the alpha subunits. Kiger L, Baudin V, Desbois A, Pagnier J, Kister J, Griffon N, Henry Y, Poyart C, Marden MC. Eur. J. Biochem. 243 365-373 (1997)
  113. Time-resolved hole-burning study on myoglobin: fluctuation of restricted water within distal pocket. Shibata Y, Ishikawa H, Takahashi S, Morishima I. Biophys. J. 80 1013-1023 (2001)
  114. Direct evidence for a hydrogen bond to bound dioxygen in a myoglobin/hemoglobin model system and in cobalt myoglobin by pulse-EPR spectroscopy. Dube H, Kasumaj B, Calle C, Saito M, Jeschke G, Diederich F. Angew. Chem. Int. Ed. Engl. 47 2600-2603 (2008)
  115. Effects of local protein environment on the binding of diatomic molecules to heme in myoglobins. DFT and dispersion-corrected DFT studies. Liao MS, Huang MJ, Watts JD. J Mol Model 19 3307-3323 (2013)
  116. Ferric species equilibrium of the giant extracellular hemoglobin of Glossoscolex paulistus in alkaline medium: HALS hemichrome as a precursor of pentacoordinate species. Moreira LM, Poli AL, Costa-Filho AJ, Imasato H. Int. J. Biol. Macromol. 42 103-110 (2008)
  117. Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands. Wang Y, Zoneff ER, Thomas JW, Hong N, Tan LL, McGillivray DJ, Perriman AW, Law KCL, Thompson LH, Moriarty N, Parish CL, Williams RJ, Jackson CJ, Nisbet DR. Nat Commun 14 457 (2023)
  118. Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IX-reconstituted myoglobin, hemoglobin and its alpha and beta subunits. Podstawka E, Proniewicz LM. J. Inorg. Biochem. 98 1502-1512 (2004)
  119. Significantly enhanced heme retention ability of myoglobin engineered to mimic the third covalent linkage by nonaxial histidine to heme (vinyl) in synechocystis hemoglobin. Uppal S, Salhotra S, Mukhi N, Zaidi FK, Seal M, Dey SG, Bhat R, Kundu S. J. Biol. Chem. 290 1979-1993 (2015)
  120. The ferrous-dioxy complex of Leishmania major globin coupled heme containing adenylate cyclase: the role of proximal histidine on its stability. Roy J, Sen Santara S, Bose M, Mukherjee S, Saha R, Adak S. Biochim. Biophys. Acta 1844 615-622 (2014)
  121. The stretching frequencies of bound alkyl isocyanides indicate two distinct ligand orientations within the distal pocket of myoglobin. Blouin GC, Olson JS. Biochemistry 49 4968-4976 (2010)
  122. Ferricyanide-mediated oxidation of ferrous nitrosylated sperm whale myoglobin involves the formation of the ferric nitrosylated intermediate. Ascenzi P, Petrella G, Coletta M. Biochem. Biophys. Res. Commun. 359 871-876 (2007)
  123. Hemoglobin Kirklareli (α H58L), a New Variant Associated with Iron Deficiency and Increased CO Binding. Bissé E, Schaeffer-Reiss C, Van Dorsselaer A, Alayi TD, Epting T, Winkler K, Benitez Cardenas AS, Soman J, Birukou I, Samuel PP, Olson JS. J. Biol. Chem. 292 2542-2555 (2017)
  124. pH-Induced conformational isomerization of leghemoglobin from Arachis hypogea. Basak P, Pattanayak R, Nag S, Bhattacharyya M. Biochemistry Mosc. 79 1255-1261 (2014)
  125. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Samuel PP, Case DA. Biochemistry 59 4093-4107 (2020)
  126. EPR studies on the photoinduced intermediates of NO complexes in recombinant ferric-Mb trapped at low temperatures. Hori H, Masuya F, Dou Y, Ikeda-Saito M. J. Inorg. Biochem. 82 181-187 (2000)
  127. Phosphate group effects upon the equilibrium of iron(III) meso-tetrakis (4-N-methylpyridiniumyl) porphyrin in aqueous solution. Santiago PS, Moreira LM, Tabak M. J. Inorg. Biochem. 100 1715-1721 (2006)
  128. Role of Heme Pocket Water in Allosteric Regulation of Ligand Reactivity in Human Hemoglobin. Esquerra RM, Bibi BM, Tipgunlakant P, Birukou I, Soman J, Olson JS, Kliger DS, Goldbeck RA. Biochemistry 55 4005-4017 (2016)
  129. Solvation and cavity occupation in biomolecules. Lynch GC, Perkyns JS, Nguyen BL, Pettitt BM. Biochim. Biophys. Acta 1850 923-931 (2015)
  130. The Interplay between Molten Globules and Heme Disassociation Defines Human Hemoglobin Disassembly. Samuel PP, White MA, Ou WC, Case DA, Phillips GN, Olson JS. Biophys J 118 1381-1400 (2020)
  131. Contributions of higher-order proximal distribution functions to solvent structure around proteins. Yousefi R, Lynch GC, Galbraith M, Pettitt BM. J Chem Phys 155 104110 (2021)
  132. Do Osmolytes Impact the Structure and Dynamics of Myoglobin? Kossowska D, Kwak K, Cho M. Molecules 23 (2018)
  133. Evaluating membrane affinity by integrating protein orientations. Zhu F, Clauss M. J. Mol. Graph. Model. 54 141-147 (2014)
  134. Molecular dynamics simulations indicate that tyrosineB10 limits motions of distal histidine to regulate CO binding in soybean leghemoglobin. Sharma S, Kumar A, Kundu S, Bandyopadhyay P. Proteins 83 1836-1848 (2015)
  135. Nitrosyl Myoglobins and Their Nitrite Precursors: Crystal Structural and Quantum Mechanics and Molecular Mechanics Theoretical Investigations of Preferred Fe -NO Ligand Orientations in Myoglobin Distal Pockets. Wang B, Shi Y, Tejero J, Powell SM, Thomas LM, Gladwin MT, Shiva S, Zhang Y, Richter-Addo GB. Biochemistry 57 4788-4802 (2018)
  136. OPUS-Mut: Studying the Effect of Protein Mutation through Side-Chain Modeling. Xu G, Wang Q, Ma J. J Chem Theory Comput 19 1629-1640 (2023)
  137. Organometallic myoglobins: Formation of Fe-carbon bonds and distal pocket effects on aryl ligand conformations. Wang B, Thomas LM, Richter-Addo GB. J. Inorg. Biochem. 164 1-4 (2016)
  138. Photolytic Cross-Linking to Probe Protein-Protein and Protein-Matrix Interactions in Lyophilized Powders. Iyer LK, Moorthy BS, Topp EM. Mol. Pharm. 12 3237-3249 (2015)
  139. Probing the role of hydration in the unfolding transitions of carbonmonoxy myoglobin and apomyoglobin. Guo L, Park J, Lee T, Chowdhury P, Lim M, Gai F. J Phys Chem B 113 6158-6163 (2009)
  140. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity. Kumar N, Astegno A, Chen J, Giorgetti A, Dominici P. Int J Mol Sci 17 (2016)
  141. Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity. Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L. Acta Crystallogr. D Biol. Crystallogr. 70 2833-2839 (2014)


Related citations provided by authors (2)

  1. Crystal Structure of Myoglobin from a Synthetic Gene. Phillips Jr GN, Arduini RM, Springer BA, Sligar SG Proteins 7 358- (1990)
  2. High-Level Expression of Sperm Whale Myoglobin in Escherichia Coli. Springer BA, Sligar SG Proc. Natl. Acad. Sci. U.S.A. 84 8961- (1987)