2jfn Citations

Exploitation of structural and regulatory diversity in glutamate racemases.

Nature 447 817-22 (2007)
Related entries: 2jfo, 2jfp, 2jfq, 2jfu, 2jfv, 2jfw, 2jfx, 2jfy, 2jfz

Cited: 84 times
EuropePMC logo PMID: 17568739

Abstract

Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and D-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.

Reviews - 2jfn mentioned but not cited (1)

  1. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Zhang Y, Doruker P, Kaynak B, Zhang S, Krieger J, Li H, Bahar I. Curr Opin Struct Biol 62 14-21 (2020)

Articles - 2jfn mentioned but not cited (6)

  1. ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python. Zhang S, Krieger JM, Zhang Y, Kaya C, Kaynak B, Mikulska-Ruminska K, Doruker P, Li H, Bahar I. Bioinformatics 37 3657-3659 (2021)
  2. Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions. Kaynak BT, Bahar I, Doruker P. Comput Struct Biotechnol J 18 1577-1586 (2020)
  3. Nature of allosteric inhibition in glutamate racemase: discovery and characterization of a cryptic inhibitory pocket using atomistic MD simulations and pKa calculations. Whalen KL, Tussey KB, Blanke SR, Spies MA. J Phys Chem B 115 3416-3424 (2011)
  4. Flooding enzymes: quantifying the contributions of interstitial water and cavity shape to ligand binding using extended linear response free energy calculations. Whalen KL, Spies MA. J Chem Inf Model 53 2349-2359 (2013)
  5. Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections. Israyilova A, Buroni S, Forneris F, Scoffone VC, Shixaliyev NQ, Riccardi G, Chiarelli LR. PLoS One 11 e0167350 (2016)
  6. Discovery of Nicotinamide Adenine Dinucleotide Binding Proteins in the Escherichia coli Proteome Using a Combined Energetic- and Structural-Bioinformatics-Based Approach. Zeng L, Shin WH, Zhu X, Park SH, Park C, Tao WA, Kihara D. J Proteome Res 16 470-480 (2017)


Reviews citing this publication (12)

  1. Cytoplasmic steps of peptidoglycan biosynthesis. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. FEMS Microbiol Rev 32 168-207 (2008)
  2. Dynamic dissociating homo-oligomers and the control of protein function. Selwood T, Jaffe EK. Arch Biochem Biophys 519 131-143 (2012)
  3. Glutamate racemase as a target for drug discovery. Fisher SL. Microb Biotechnol 1 345-360 (2008)
  4. Viable screening targets related to the bacterial cell wall. Silver LL. Ann N Y Acad Sci 1277 29-53 (2013)
  5. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Sertbas M, Ulgen KO. Front Cell Dev Biol 8 566702 (2020)
  6. Nontraditional therapies to treat Helicobacter pylori infection. Makobongo MO, Gilbreath JJ, Merrell DS. J Microbiol 52 259-272 (2014)
  7. Breaking down the cell wall: Still an attractive antibacterial strategy. Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Front Microbiol 13 952633 (2022)
  8. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Duckworth MJ, Okoli AS, Mendz GL. Expert Rev Anti Infect Ther 7 835-867 (2009)
  9. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Chem Soc Rev 50 5952-5984 (2021)
  10. Exploiting racemases. Femmer C, Bechtold M, Roberts TM, Panke S. Appl Microbiol Biotechnol 100 7423-7436 (2016)
  11. Friend or Foe: Protein Inhibitors of DNA Gyrase. Ruan S, Tu CH, Bourne CR. Biology (Basel) 13 84 (2024)
  12. Synthesis of the Hexahydropyrrolo-[3,2-c]-quinoline Core Structure and Strategies for Further Elaboration to Martinelline, Martinellic Acid, Incargranine B, and Seneciobipyrrolidine. Haarr MB, Sydnes MO. Molecules 26 E341 (2021)

Articles citing this publication (65)

  1. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. Tamae C, Liu A, Kim K, Sitz D, Hong J, Becket E, Bui A, Solaimani P, Tran KP, Yang H, Miller JH. J Bacteriol 190 5981-5988 (2008)
  2. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Bowman GR, Geissler PL. Proc Natl Acad Sci U S A 109 11681-11686 (2012)
  3. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. Mol Syst Biol 7 460 (2011)
  4. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Bowman GR, Bolin ER, Hart KM, Maguire BC, Marqusee S. Proc Natl Acad Sci U S A 112 2734-2739 (2015)
  5. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Gawande MB, Bonifácio VD, Luque R, Branco PS, Varma RS. Chem Soc Rev 42 5522-5551 (2013)
  6. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Kim HU, Kim TY, Lee SY. Mol Biosyst 6 339-348 (2010)
  7. Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. Kahle KM, Steger HK, Root MJ. PLoS Pathog 5 e1000674 (2009)
  8. Pyrazolopyrimidinediones are selective agents for Helicobacter pylori that suppress growth through inhibition of glutamate racemase (MurI). de Jonge BL, Kutschke A, Uria-Nickelsen M, Kamp HD, Mills SD. Antimicrob Agents Chemother 53 3331-3336 (2009)
  9. Potent and selective inhibitors of Helicobacter pylori glutamate racemase (MurI): pyridodiazepine amines. Geng B, Basarab G, Comita-Prevoir J, Gowravaram M, Hill P, Kiely A, Loch J, MacPherson L, Morningstar M, Mullen G, Osimboni E, Satz A, Eyermann C, Lundqvist T. Bioorg Med Chem Lett 19 930-936 (2009)
  10. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP. Mol Plant Microbe Interact 21 1261-1270 (2008)
  11. Determinants of catalytic power and ligand binding in glutamate racemase. Spies MA, Reese JG, Dodd D, Pankow KL, Blanke SR, Baudry J. J Am Chem Soc 131 5274-5284 (2009)
  12. Design of Helicobacter pylori glutamate racemase inhibitors as selective antibacterial agents: a novel pro-drug approach to increase exposure. Basarab GS, Hill PJ, Rastagar A, Webborn PJ. Bioorg Med Chem Lett 18 4716-4722 (2008)
  13. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Prosser GA, Rodenburg A, Khoury H, de Chiara C, Howell S, Snijders AP, de Carvalho LP. Antimicrob Agents Chemother 60 6091-6099 (2016)
  14. Crystal structure of diaminopimelate epimerase from Arabidopsis thaliana, an amino acid racemase critical for L-lysine biosynthesis. Pillai B, Moorthie VA, van Belkum MJ, Marcus SL, Cherney MM, Diaper CM, Vederas JC, James MN. J Mol Biol 385 580-594 (2009)
  15. Hybrid Steered Molecular Dynamics-Docking: An Efficient Solution to the Problem of Ranking Inhibitor Affinities Against a Flexible Drug Target. Whalen KL, Chang KM, Spies MA. Mol Inform 30 459-471 (2011)
  16. Exploiting Enzyme Plasticity in Virtual Screening: High Efficiency Inhibitors of Glutamate Racemase. Whalen KL, Pankow KL, Blanke SR, Spies MA. ACS Med Chem Lett 1 9-13 (2010)
  17. Primordial-like enzymes from bacteria with reduced genomes. Ferla MP, Brewster JL, Hall KR, Evans GB, Patrick WM. Mol Microbiol 105 508-524 (2017)
  18. Structure-guided directed evolution of alkenyl and arylmalonate decarboxylases. Okrasa K, Levy C, Wilding M, Goodall M, Baudendistel N, Hauer B, Leys D, Micklefield J. Angew Chem Int Ed Engl 48 7691-7694 (2009)
  19. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities. Liechti G, Singh R, Rossi PL, Gray MD, Adams NE, Maurelli AT. mBio 9 e00204-18 (2018)
  20. Dynamics of catalysis revealed from the crystal structures of mutants of diaminopimelate epimerase. Pillai B, Cherney M, Diaper CM, Sutherland A, Blanchard JS, Vederas JC, James MN. Biochem Biophys Res Commun 363 547-553 (2007)
  21. Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Pawar A, Jha P, Chopra M, Chaudhry U, Saluja D. Sci Rep 10 949 (2020)
  22. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H, Boniface A, Dementin S, Blanot D, Mengin-Lecreulx D, Gobec S, Dessen A, Roper DI. J Biol Chem 288 33439-33448 (2013)
  23. Biosynthesis of a Novel Glutamate Racemase Containing a Site-Specific 7-Hydroxycoumarin Amino Acid: Enzyme-Ligand Promiscuity Revealed at the Atomistic Level. Dean SF, Whalen KL, Spies MA. ACS Cent Sci 1 364-373 (2015)
  24. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus. Vemula H, Ayon NJ, Gutheil WG. Biochimie 121 72-78 (2016)
  25. Design of inhibitors of Helicobacter pylori glutamate racemase as selective antibacterial agents: incorporation of imidazoles onto a core pyrazolopyrimidinedione scaffold to improve bioavailabilty. Basarab GS, Hill P, Eyermann CJ, Gowravaram M, Käck H, Osimoni E. Bioorg Med Chem Lett 22 5600-5607 (2012)
  26. Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate racemase (MurI) in gram-positive bacteria. Breault GA, Comita-Prevoir J, Eyermann CJ, Geng B, Petrichko R, Doig P, Gorseth E, Noonan B. Bioorg Med Chem Lett 18 6100-6103 (2008)
  27. Exploring 9-benzyl purines as inhibitors of glutamate racemase (MurI) in Gram-positive bacteria. Geng B, Breault G, Comita-Prevoir J, Petrichko R, Eyermann C, Lundqvist T, Doig P, Gorseth E, Noonan B. Bioorg Med Chem Lett 18 4368-4372 (2008)
  28. Exploring the chemistry and evolution of the isomerases. Martínez Cuesta S, Rahman SA, Thornton JM. Proc Natl Acad Sci U S A 113 1796-1801 (2016)
  29. Glutamate racemase dimerization inhibits dynamic conformational flexibility and reduces catalytic rates. Mehboob S, Guo L, Fu W, Mittal A, Yau T, Truong K, Johlfs M, Long F, Fung LW, Johnson ME. Biochemistry 48 7045-7055 (2009)
  30. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GE, Lameira J, Lamichhane G, Kruger HG, Honarparvar B. J Biomol Struct Dyn 34 2399-2417 (2016)
  31. In silico optimization of a fragment-based hit yields biologically active, high-efficiency inhibitors for glutamate racemase. Whalen KL, Chau AC, Spies MA. ChemMedChem 8 1681-1689 (2013)
  32. Inhibition of glutamate racemase by substrate-product analogues. Pal M, Bearne SL. Bioorg Med Chem Lett 24 1432-1436 (2014)
  33. Structure and mechanism of an unusual malonate decarboxylase and related racemases. Okrasa K, Levy C, Hauer B, Baudendistel N, Leys D, Micklefield J. Chemistry 14 6609-6613 (2008)
  34. Glutamate Racemase Mutants of Bacillus anthracis. Oh SY, Richter SG, Missiakas DM, Schneewind O. J Bacteriol 197 1854-1861 (2015)
  35. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Zhang J, Liu J, Ling J, Tong Z, Fu Y, Liang M. Microbiol Res 186-187 1-8 (2016)
  36. Overexpression of a newly identified d-amino acid transaminase in Mycobacterium smegmatis complements glutamate racemase deletion. Mortuza R, Aung HL, Taiaroa G, Opel-Reading HK, Kleffmann T, Cook GM, Krause KL. Mol Microbiol 107 198-213 (2018)
  37. Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis. Morayya S, Awasthy D, Yadav R, Ambady A, Sharma U. Gene 555 269-276 (2015)
  38. Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Tian R, Li L, Tang W, Liu H, Ye M, Zhao ZK, Zou H. Proteomics 8 3094-3104 (2008)
  39. Cobalamin-Dependent Apparent Intramolecular Methyl Transfer for Biocatalytic Constitutional Isomerization of Catechol Monomethyl Ethers. Farnberger JE, Hiebler K, Bierbaumer S, Skibar W, Zepeck F, Kroutil W. ACS Catal 9 3900-3905 (2019)
  40. Genetic design of conditional D-glutamate auxotrophy for Bacillus subtilis: use of a vector-borne poly-gamma-glutamate synthetic system. Ashiuchi M, Nishikawa Y, Matsunaga K, Yamamoto M, Shimanouchi K, Misono H. Biochem Biophys Res Commun 362 646-650 (2007)
  41. Pyridodiazepine amines are selective therapeutic agents for helicobacter pylori by suppressing growth through inhibition of glutamate racemase but are predicted to require continuous elevated levels in plasma to achieve clinical efficacy. de Jonge BL, Kutschke A, Newman JV, Rooney MT, Yang W, Cederberg C. Antimicrob Agents Chemother 59 2337-2342 (2015)
  42. Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites. Amyes TL, Richard JP. Synlett 28 2407-2421 (2017)
  43. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica. Kuettner EB, Keim A, Kircher M, Rosmus S, Sträter N. J Mol Biol 377 386-394 (2008)
  44. Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: A stereoselective platform for inhibitor screening of amino acid isomerases. Gavina JM, White CE, Finan TM, Britz-McKibbin P. Electrophoresis 31 2831-2837 (2010)
  45. Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum. Potrykus J, Flemming J, Bearne SL. Arch Biochem Biophys 491 16-24 (2009)
  46. Resistance mechanism to an uncompetitive inhibitor of a single-substrate, single-product enzyme: a study of Helicobacter pylori glutamate racemase. Keating TA. Future Med Chem 5 1203-1214 (2013)
  47. Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates. Lewin R, Goodall M, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J. Chemistry 21 6557-6563 (2015)
  48. Recombinant expression, purification and characterisation of the native glutamate racemase from Lactobacillus plantarum NC8. Böhmer N, Dautel A, Eisele T, Fischer L. Protein Expr Purif 88 54-60 (2013)
  49. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase. Tamay-Cach F, Correa-Basurto J, Villa-Tanaca L, Mancilla-Percino T, Juárez-Montiel M, Trujillo-Ferrara JG. J Enzyme Inhib Med Chem 28 1026-1033 (2013)
  50. Identification of Highly Specific Diversity-Oriented Synthesis-Derived Inhibitors of Clostridium difficile. Duvall JR, Bedard L, Naylor-Olsen AM, Manson AL, Bittker JA, Sun W, Fitzgerald ME, He Z, Lee MD, Marie JC, Muncipinto G, Rush D, Xu D, Xu H, Zhang M, Earl AM, Palmer MA, Foley MA, Vacca JP, Scherer CA. ACS Infect Dis 3 349-359 (2017)
  51. An Atomistic Understanding of Allosteric Inhibition of Glutamate Racemase: a Dampening of Native Activation Dynamics. Witkin KR, Vance NR, Caldwell C, Li Q, Yu L, Spies MA. ChemMedChem 15 376-384 (2020)
  52. Computational investigations on the catalytic mechanism of maleate isomerase: the role of the active site cysteine residues. Dokainish HM, Ion BF, Gauld JW. Phys Chem Chem Phys 16 12462-12474 (2014)
  53. Congress Structures and diseases. Wendt KU, Weiss MS, Cramer P, Heinz DW. Nat Struct Mol Biol 15 117-120 (2008)
  54. PLP-independent racemization: mechanistic and mutational studies of O-ureidoserine racemase (DcsC). Ahn YC, Fischer C, van Belkum MJ, Vederas JC. Org Biomol Chem 16 1126-1133 (2018)
  55. A Synthesis of Exiguaquinol Dessulfate. Schwarzwalder GM, Scott DR, Vanderwal CD. Chemistry 22 17953-17957 (2016)
  56. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization. Mackie J, Kumar H, Bearne SL. FEBS Lett 592 3399-3413 (2018)
  57. Decrypting a cryptic allosteric pocket in H. pylori glutamate racemase. Chheda PR, Cooling GT, Dean SF, Propp J, Hobbs KF, Spies MA. Commun Chem 4 172 (2021)
  58. Elucidating the Catalytic Power of Glutamate Racemase by Investigating a Series of Covalent Inhibitors. Vance NR, Witkin KR, Rooney PW, Li Y, Pope M, Spies MA. ChemMedChem 13 2514-2521 (2018)
  59. Heterologous expression, purification and biochemical characterization of a glutamate racemase (MurI) from Streptococcus mutans UA159. Wang X, Chen C, Shen T, Zhang J. PeerJ 7 e8300 (2019)
  60. Pivotal Enzyme in Glutamate Metabolism of Poly-g-Glutamate-Producing Microbes. Ashiuchi M, Yamamoto T, Kamei T. Life (Basel) 3 181-188 (2013)
  61. Targeting multi-drug-resistant Acinetobacter baumannii: a structure-based approach to identify the promising lead candidates against glutamate racemase. Kumar A, Singh E, Jha RK, Khan RJ, Jain M, Varshney S, Muthukumaran J, Singh AK. J Mol Model 29 188 (2023)
  62. X-ray structure analysis of a unique D-amino-acid oxidase from the thermophilic fungus Rasamsonia emersonii strain YA. Shimekake Y, Hirato Y, Funabashi R, Okazaki S, Goto M, Furuichi T, Suzuki H, Kera Y, Takahashi S. Acta Crystallogr F Struct Biol Commun 76 517-523 (2020)
  63. Decrypting a Cryptic Allosteric Pocket in H. pylori Glutamate Racemase. Chheda PR, Cooling GT, Dean SF, Propp J, Hobbs KF, Spies MA. Commun Chem 4 172 (2021)
  64. Nanorod-Shaped Basic Al2O3 Catalyzed N,N-Diformylation of Bisuracil Derivatives: A Greener "NOSE" Approach. Das VK, Thakur AJ. ISRN Org Chem 2013 793159 (2013)
  65. Study on variability assessment and evolutionary relationships of glutamate racemase in Pseudomonas species. Kaushik P, Jain CK, Gabrani R, Singh TR. Interdiscip Sci 5 247-257 (2013)