2imi Citations

Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity.

J Struct Biol 164 228-35 (2008)
Related entries: 2il3, 2imk

Cited: 42 times
EuropePMC logo PMID: 18778777

Abstract

Glutathione S-transferases (GSTs), a major family of detoxifying enzymes, play a pivotal role in insecticide resistance in insects. In the malaria vector Anopheles gambiae, insect-specific epsilon class GSTs are associated with resistance to the organochlorine insecticide DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane]. Five of the eight class members have elevated expression levels in a DDT resistant strain. agGSTe2 is considered the most important GST in conferring DDT resistance in A. gambiae, and is the only member of the epsilon class with confirmed DDT-metabolizing activity. A delta class GST from the same species shows marginal DDT-metabolizing activity but the activity of agGSTe2 is approximately 350x higher than the delta class agGST1-6. To investigate its catalytic mechanism and the molecular basis of its unusually high DDT-metabolizing ability, three agGSTe2 crystal structures including one apo form and two binary complex forms with the co-factor glutathione (GSH) or the inhibitor S-hexylglutathione (GTX) have been solved with a resolution up to 1.4A. The structure of agGSTe2 shows the canonical GST fold with a highly conserved N-domain and a less conserved C-domain. The binding of GSH or GTX does not induce significant conformational changes in the protein. The modeling of DDT into the putative DDT-binding pocket suggests that DDT is likely to be converted to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene] through an elimination reaction triggered by the nucleophilic attack of the thiolate group of GS(-) on the beta-hydrogen of DDT. The comparison with the less active agGST1-6 provides the structural evidence for its high DDT-detoxifying activity. In short, this is achieved through the inclination of the upper part of H4 helix (H4'' helix), which brings residues Arg112, Glu116, and Phe120 closer to the GSH-binding site resulting in a more efficient GS(-)-stabilizing hydrogen-bond-network and higher DDT-binding affinity.

Articles - 2imi mentioned but not cited (8)

  1. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, Ranson H, Albert A, Wondji CS. Genome Biol 15 R27 (2014)
  2. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, Dadzie S, Jenkins AM, Regna K, Boko P, Djogbenou L, Muskavitch MA, Ranson H, Paine MJ, Mayans O, Donnelly MJ. PLoS One 9 e92662 (2014)
  3. The impact of nitric oxide toxicity on the evolution of the glutathione transferase superfamily: a proposal for an evolutionary driving force. Bocedi A, Fabrini R, Farrotti A, Stella L, Ketterman AJ, Pedersen JZ, Allocati N, Lau PC, Grosse S, Eltis LD, Ruzzini A, Edwards TE, Morici L, Del Grosso E, Guidoni L, Bovi D, Lo Bello M, Federici G, Parker MW, Board PG, Ricci G. J Biol Chem 288 24936-24947 (2013)
  4. Comparison of epsilon- and delta-class glutathione S-transferases: the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster. Scian M, Le Trong I, Mazari AM, Mannervik B, Atkins WM, Stenkamp RE. Acta Crystallogr D Biol Crystallogr 71 2089-2098 (2015)
  5. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site. Wongsantichon J, Robinson RC, Ketterman AJ. Biosci Rep 35 e00272 (2015)
  6. Effect of a Copper (II) Complex on The Induction of Apoptosis in Human Hepatocellular Carcinoma Cells Rezaei A, Khanamani Falahati-Pour S, Mohammadizadeh F, Hajizadeh MR, Mirzaei MR, Khoshdel A, Fahmidehkar MA, Mahmoodi M. Asian Pac J Cancer Prev 19 2877-2884 (2018)
  7. Isomerization of the phytohormone precursor 12-oxophytodienoic acid (OPDA) in the insect gut: a mechanistic and computational study. Dabrowska P, Shabab M, Brandt W, Vogel H, Boland W. J Biol Chem 286 22348-22354 (2011)
  8. Investigation of the active site of an unclassified glutathione transferase in Bombyx mori by alanine scanning. Yamamoto K, Yamaguchi M, Yamada N. J Pestic Sci 45 238-240 (2020)


Reviews citing this publication (3)

  1. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Feyereisen R, Dermauw W, Van Leeuwen T. Pestic Biochem Physiol 121 61-77 (2015)
  2. Insect glutathione transferases. Ketterman AJ, Saisawang C, Wongsantichon J. Drug Metab Rev 43 253-265 (2011)
  3. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Koirala B K S, Moural T, Zhu F. Int J Biol Sci 18 5713-5723 (2022)

Articles citing this publication (31)

  1. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG. Evol Appl 4 225-248 (2011)
  2. Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1. Low WY, Feil SC, Ng HL, Gorman MA, Morton CJ, Pyke J, McConville MJ, Bieri M, Mok YF, Robin C, Gooley PR, Parker MW, Batterham P. J Mol Biol 399 358-366 (2010)
  3. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Oliver SV, Brooke BD. Malar J 12 44 (2013)
  4. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu KY, Ma E, Zhang J. PLoS One 8 e58410 (2013)
  5. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. Hsu JC, Chien TY, Hu CC, Chen MJ, Wu WJ, Feng HT, Haymer DS, Chen CY. PLoS One 7 e40950 (2012)
  6. Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis. Wilding CS, Weetman D, Rippon EJ, Steen K, Mawejje HD, Barsukov I, Donnelly MJ. Mol Genet Genomics 290 201-215 (2015)
  7. RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Yu X, Killiny N. Pest Manag Sci 74 638-647 (2018)
  8. Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: characterization and developmental and induced expression by insecticides. Deng H, Huang Y, Feng Q, Zheng S. J Insect Physiol 55 1174-1183 (2009)
  9. Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Brooke BD, Koekemoer LL. Parasit Vectors 3 74 (2010)
  10. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori. Yamamoto K, Yamada N. Sci Rep 6 30073 (2016)
  11. Catalytic function of an ε-class glutathione S-transferase of the silkworm. Yamamoto K, Aso Y, Yamada N. Insect Mol Biol 22 523-531 (2013)
  12. Identification and expression profiles of nine glutathione S-transferase genes from the important rice phloem sap-sucker and virus vector Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae). Zhou WW, Li XW, Quan YH, Cheng J, Zhang CX, Gurr G, Zhu ZR. Pest Manag Sci 68 1296-1305 (2012)
  13. Circadian regulation of permethrin susceptibility by glutathione S-transferase (BgGSTD1) in the German cockroach (Blattella germanica). Lin YH, Lee CM, Huang JH, Lee HJ. J Insect Physiol 65 45-50 (2014)
  14. Glutathione-binding site of a bombyx mori theta-class glutathione transferase. Hossain MD, Yamada N, Yamamoto K. PLoS One 9 e97740 (2014)
  15. Comparative genomics of the anopheline glutathione S-transferase epsilon cluster. Ayres CF, Müller P, Dyer N, Wilding CS, Rigden DJ, Donnelly MJ. PLoS One 6 e29237 (2011)
  16. Detection of alleles associated with resistance to chemical insecticide in the malaria vector Anopheles arabiensis in Santiago, Cabo Verde. da Cruz DL, Paiva MHS, Guedes DRD, Alves J, Gómez LF, Ayres CFJ. Malar J 18 120 (2019)
  17. Genome-Wide Transcriptional Analysis and Functional Validation Linked a Cluster of Epsilon Glutathione S-Transferases with Insecticide Resistance in the Major Malaria Vector Anopheles funestus across Africa. Kouamo MFM, Ibrahim SS, Hearn J, Riveron JM, Kusimo M, Tchouakui M, Ebai T, Tchapga W, Wondji MJ, Irving H, Boudjeko T, Boyom FF, Wondji CS. Genes (Basel) 12 561 (2021)
  18. Structural evidence for conformational changes of Delta class glutathione transferases after ligand binding. Wongsantichon J, Robinson RC, Ketterman AJ. Arch Biochem Biophys 521 77-83 (2012)
  19. Two delta class glutathione S-transferases involved in the detoxification of malathion in Bactrocera dorsalis (Hendel). Meng LW, Yuan GR, Lu XP, Jing TX, Zheng LS, Yong HX, Wang JJ. Pest Manag Sci 75 1527-1538 (2019)
  20. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes. Cornelie S, Rossignol M, Seveno M, Demettre E, Mouchet F, Djègbè I, Marin P, Chandre F, Corbel V, Remoué F, Mathieu-Daudé F. PLoS One 9 e103816 (2014)
  21. Structural analysis of an epsilon-class glutathione transferase from housefly, Musca domestica. Nakamura C, Yajima S, Miyamoto T, Sue M. Biochem Biophys Res Commun 430 1206-1211 (2013)
  22. Functional Analysis of an Epsilon-Class Glutathione S-Transferase From Nilaparvata lugens (Hemiptera: Delphacidae). Saruta F, Yamada N, Yamamoto K. J Insect Sci 19 14 (2019)
  23. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. Lin R, Yang M, Yao B. PLoS One 17 e0263462 (2022)
  24. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis. Rajarapu SP, Mittapalli O. Comp Biochem Physiol B Biochem Mol Biol 165 66-72 (2013)
  25. Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria. Zhang X, Wang J, Zhang M, Qin G, Li D, Zhu KY, Ma E, Zhang J. PLoS One 9 e114776 (2014)
  26. The Binary Mixtures of Lambda-Cyhalothrin, Chlorfenapyr, and Abamectin, against the House Fly Larvae, Musca domestica L. El Sherif DF, Soliman NH, Alshallash KS, Ahmed N, Ibrahim MAR, A Al-Shammery K, Al-Khalaf AA. Molecules 27 3084 (2022)
  27. Characterization of the glutathione S-transferase genes in the sand flies Phlebotomus papatasi and Lutzomyia longipalpis shows expansion of the novel glutathione S-transferase xi (X) class. Ashraf F, Weedall GD. Insect Mol Biol 31 417-433 (2022)
  28. Phylogenetic analysis of the GST family in Anopheles (Nyssorhynchus) darlingi. Azevedo-Júnior GM, Guimarães-Marques GM, Cegatti Bridi L, Christine Ohse K, Vicentini R, Tadei W, Rafael MS. Acta Trop 136 27-31 (2014)
  29. Effects of Methyl Jasmonate Fumigation on the Growth and Detoxification Ability of Spodoptera litura to Xanthotoxin. Chen L, Song J, Wang J, Ye M, Deng Q, Wu X, Wu X, Ren B. Insects 14 145 (2023)
  30. The structure of a shellfish specific GST class glutathione S-transferase from antarctic bivalve Laternula elliptica reveals novel active site architecture. Park AK, Moon JH, Jang EH, Park H, Ahn IY, Lee KS, Chi YM. Proteins 81 531-537 (2013)
  31. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Animals (Basel) 13 919 (2023)