2i36 Citations

Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.

Proc Natl Acad Sci U S A 103 16123-8 (2006)
Related entries: 2i35, 2i37

Cited: 283 times
EuropePMC logo PMID: 17060607

Abstract

The changes that lead to activation of G protein-coupled receptors have not been elucidated at the structural level. In this work we report the crystal structures of both ground state and a photoactivated deprotonated intermediate of bovine rhodopsin at a resolution of 4.15 A. In the photoactivated state, the Schiff base linking the chromophore and Lys-296 becomes deprotonated, reminiscent of the G protein-activating state, metarhodopsin II. The structures reveal that the changes that accompany photoactivation are smaller than previously predicted for the metarhodopsin II state and include changes on the cytoplasmic surface of rhodopsin that possibly enable the coupling to its cognate G protein, transducin. Furthermore, rhodopsin forms a potentially physiologically relevant dimer interface that involves helices I, II, and 8, and when taken with the prior work that implicates helices IV and V as the physiological dimer interface may account for one of the interfaces of the oligomeric structure of rhodopsin seen in the membrane by atomic force microscopy. The activation and oligomerization models likely extend to the majority of other G protein-coupled receptors.

Reviews - 2i36 mentioned but not cited (14)

  1. Structure-function of the G protein-coupled receptor superfamily. Katritch V, Cherezov V, Stevens RC. Annu Rev Pharmacol Toxicol 53 531-556 (2013)
  2. Diversity and modularity of G protein-coupled receptor structures. Katritch V, Cherezov V, Stevens RC. Trends Pharmacol Sci 33 17-27 (2012)
  3. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Bahar I, Lezon TR, Bakan A, Shrivastava IH. Chem Rev 110 1463-1497 (2010)
  4. Discovery of new GPCR biology: one receptor structure at a time. Hanson MA, Stevens RC. Structure 17 8-14 (2009)
  5. The significance of G protein-coupled receptor crystallography for drug discovery. Salon JA, Lodowski DT, Palczewski K. Pharmacol Rev 63 901-937 (2011)
  6. Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Park PS, Lodowski DT, Palczewski K. Annu Rev Pharmacol Toxicol 48 107-141 (2008)
  7. Structural Basis for G Protein-Coupled Receptor Activation. Manglik A, Kruse AC. Biochemistry 56 5628-5634 (2017)
  8. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Müller DJ, Wu N, Palczewski K. Pharmacol Rev 60 43-78 (2008)
  9. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Jacobson KA, Costanzi S. Mol Pharmacol 82 361-371 (2012)
  10. Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA. Curr Pharm Des 15 3994-4002 (2009)
  11. Computational approaches for modeling GPCR dimerization. Meng XY, Mezei M, Cui M. Curr Pharm Biotechnol 15 996-1006 (2014)
  12. Structural approaches to understanding retinal proteins needed for vision. Orban T, Jastrzebska B, Palczewski K. Curr Opin Cell Biol 27 32-43 (2014)
  13. Progress in elucidating the structural and dynamic character of G Protein-Coupled Receptor oligomers for use in drug discovery. Bortolato A, Mobarec JC, Provasi D, Filizola M. Curr Pharm Des 15 4017-4025 (2009)
  14. Relax, Cool Down and Scaffold: How to Restore Surface Expression of Folding-Deficient Mutant GPCRs and SLC6 Transporters. Asjad HMM, Nasrollahi-Shirazi S, Sucic S, Freissmuth M, Nanoff C. Int J Mol Sci 18 E2416 (2017)

Articles - 2i36 mentioned but not cited (18)

  1. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K. Proc Natl Acad Sci U S A 103 16123-16128 (2006)
  2. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL. Proc Natl Acad Sci U S A 105 7439-7444 (2008)
  3. Super-resolution biomolecular crystallography with low-resolution data. Schröder GF, Levitt M, Brunger AT. Nature 464 1218-1222 (2010)
  4. Common activation mechanism of class A GPCRs. Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Elife 8 e50279 (2019)
  5. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, Richardson DC, Richardson JS, Adams PD. Acta Crystallogr D Biol Crystallogr 68 381-390 (2012)
  6. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Zhang P, Zawadzki RJ, Goswami M, Nguyen PT, Yarov-Yarovoy V, Burns ME, Pugh EN. Proc Natl Acad Sci U S A 114 E2937-E2946 (2017)
  7. Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Orban T, Jastrzebska B, Gupta S, Wang B, Miyagi M, Chance MR, Palczewski K. Structure 20 826-840 (2012)
  8. Crystal packing analysis of Rhodopsin crystals. Lodowski DT, Salom D, Le Trong I, Teller DC, Ballesteros JA, Palczewski K, Stenkamp RE. J Struct Biol 158 455-462 (2007)
  9. G protein-coupled receptors: the evolution of structural insight. Gacasan SB, Baker DL, Parrill AL. AIMS Biophys 4 491-527 (2017)
  10. An analysis of oligomerization interfaces in transmembrane proteins. Duarte JM, Biyani N, Baskaran K, Capitani G. BMC Struct Biol 13 21 (2013)
  11. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes. Schöneberg J, Heck M, Hofmann KP, Noé F. Biophys J 107 1042-1053 (2014)
  12. Homology modeling of class a G protein-coupled receptors. Costanzi S. Methods Mol Biol 857 259-279 (2012)
  13. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Johnston CA, Kimple AJ, Giguère PM, Siderovski DP. Structure 16 1086-1094 (2008)
  14. G Protein-Coupled Receptors Contain Two Conserved Packing Clusters. Sanchez-Reyes OB, Cooke ALG, Tranter DB, Rashid D, Eilers M, Reeves PJ, Smith SO. Biophys J 112 2315-2326 (2017)
  15. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN. Curr Neuropharmacol 16 786-848 (2018)
  16. A benchmark study of loop modeling methods applied to G protein-coupled receptors. Wink LH, Baker DL, Cole JA, Parrill AL. J Comput Aided Mol Des 33 573-595 (2019)
  17. A minimal ligand binding pocket within a network of correlated mutations identified by multiple sequence and structural analysis of G protein coupled receptors. Moitra S, Tirupula KC, Klein-Seetharaman J, Langmead CJ. BMC Biophys 5 13 (2012)
  18. Modeling the Heterodimer Interfaces of Melatonin Receptors. Tse LH, Wong YH. Front Cell Neurosci 15 725296 (2021)


Reviews citing this publication (78)

  1. The structure and function of G-protein-coupled receptors. Rosenbaum DM, Rasmussen SG, Kobilka BK. Nature 459 356-363 (2009)
  2. Heterotrimeric G protein activation by G-protein-coupled receptors. Oldham WM, Hamm HE. Nat Rev Mol Cell Biol 9 60-71 (2008)
  3. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Chem Rev 114 126-163 (2014)
  4. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X. Pharmacol Rev 66 413-434 (2014)
  5. A G protein-coupled receptor at work: the rhodopsin model. Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP. Trends Biochem Sci 34 540-552 (2009)
  6. Ligand binding and micro-switches in 7TM receptor structures. Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW. Trends Pharmacol Sci 30 249-259 (2009)
  7. Action of molecular switches in GPCRs--theoretical and experimental studies. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Curr Med Chem 19 1090-1109 (2012)
  8. Chemistry of the retinoid (visual) cycle. Kiser PD, Golczak M, Palczewski K. Chem Rev 114 194-232 (2014)
  9. Regulation, Signaling, and Physiological Functions of G-Proteins. Syrovatkina V, Alegre KO, Dey R, Huang XY. J Mol Biol 428 3850-3868 (2016)
  10. Chemistry and biology of vision. Palczewski K. J Biol Chem 287 1612-1619 (2012)
  11. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. McHaourab HS, Steed PR, Kazmier K. Structure 19 1549-1561 (2011)
  12. Structure and function of serotonin G protein-coupled receptors. McCorvy JD, Roth BL. Pharmacol Ther 150 129-142 (2015)
  13. Progress in structure based drug design for G protein-coupled receptors. Congreve M, Langmead CJ, Mason JS, Marshall FH. J Med Chem 54 4283-4311 (2011)
  14. How vision begins: an odyssey. Luo DG, Xue T, Yau KW. Proc Natl Acad Sci U S A 105 9855-9862 (2008)
  15. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Johnston CA, Siderovski DP. Mol Pharmacol 72 219-230 (2007)
  16. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Kumamoto CA. Nat Rev Microbiol 6 667-673 (2008)
  17. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Millar RP, Pawson AJ, Morgan K, Rissman EF, Lu ZL. Front Neuroendocrinol 29 17-35 (2008)
  18. A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Milligan G. Br J Pharmacol 153 Suppl 1 S216-29 (2008)
  19. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. McCusker EC, Bane SE, O'Malley MA, Robinson AS. Biotechnol Prog 23 540-547 (2007)
  20. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Kleinau G, Krause G. Endocr Rev 30 133-151 (2009)
  21. The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. Pardo L, Deupi X, Dölker N, López-Rodríguez ML, Campillo M. Chembiochem 8 19-24 (2007)
  22. Visual rhodopsin sees the light: structure and mechanism of G protein signaling. Ridge KD, Palczewski K. J Biol Chem 282 9297-9301 (2007)
  23. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mustafi D, Palczewski K. Mol Pharmacol 75 1-12 (2009)
  24. Structural insights into G-protein-coupled receptor activation. Weis WI, Kobilka BK. Curr Opin Struct Biol 18 734-740 (2008)
  25. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. Front Pharmacol 7 76 (2016)
  26. G protein-coupled receptors--recent advances. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. Acta Biochim Pol 59 515-529 (2012)
  27. X-ray structure breakthroughs in the GPCR transmembrane region. Topiol S, Sabio M. Biochem Pharmacol 78 11-20 (2009)
  28. Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. Grossfield A. Biochim Biophys Acta 1808 1868-1878 (2011)
  29. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Mol Cell Endocrinol 302 118-127 (2009)
  30. Constitutively active rhodopsin and retinal disease. Park PS. Adv Pharmacol 70 1-36 (2014)
  31. Recognition in the face of diversity: interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. Huang CC, Tesmer JJG. J Biol Chem 286 7715-7721 (2011)
  32. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Milić D, Veprintsev DB. Front Pharmacol 6 66 (2015)
  33. Complexes between photoactivated rhodopsin and transducin: progress and questions. Jastrzebska B, Tsybovsky Y, Palczewski K. Biochem J 428 1-10 (2010)
  34. Structure and activation of rhodopsin. Zhou XE, Melcher K, Xu HE. Acta Pharmacol Sin 33 291-299 (2012)
  35. Visualizing water molecules in transmembrane proteins using radiolytic labeling methods. Orban T, Gupta S, Palczewski K, Chance MR. Biochemistry 49 827-834 (2010)
  36. Comparative analysis of GPCR crystal structures. Lodowski DT, Angel TE, Palczewski K. Photochem Photobiol 85 425-430 (2009)
  37. From atomic structures to neuronal functions of g protein-coupled receptors. Palczewski K, Orban T. Annu Rev Neurosci 36 139-164 (2013)
  38. Chemokine receptors and other G protein-coupled receptors. Lodowski DT, Palczewski K. Curr Opin HIV AIDS 4 88-95 (2009)
  39. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk? Lyngsø C, Erikstrup N, Hansen JL. Mol Cell Endocrinol 302 203-212 (2009)
  40. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. Choe HW, Park JH, Kim YJ, Ernst OP. Neuropharmacology 60 52-57 (2011)
  41. Ensemble of G protein-coupled receptor active states. Park PS. Curr Med Chem 19 1146-1154 (2012)
  42. Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes. Brown MF, Heyn MP, Job C, Kim S, Moltke S, Nakanishi K, Nevzorov AA, Struts AV, Salgado GF, Wallat I. Biochim Biophys Acta 1768 2979-3000 (2007)
  43. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Ding X, Zhao X, Watts A. Biochem J 450 443-457 (2013)
  44. Molecular modeling of adenosine receptors: new results and trends. Martinelli A, Tuccinardi T. Med Res Rev 28 247-277 (2008)
  45. Solid-state NMR spectroscopy to study protein-lipid interactions. Huster D. Biochim Biophys Acta 1841 1146-1160 (2014)
  46. Structure and function of G protein-coupled receptors using NMR spectroscopy. Goncalves JA, Ahuja S, Erfani S, Eilers M, Smith SO. Prog Nucl Magn Reson Spectrosc 57 159-180 (2010)
  47. GPCR: G protein complexes--the fundamental signaling assembly. Jastrzebska B. Amino Acids 45 1303-1314 (2013)
  48. Lysophospholipid interactions with protein targets. Parrill AL. Biochim Biophys Acta 1781 540-546 (2008)
  49. Antibodies against G-protein coupled receptors: novel uses in screening and drug development. Gupta A, Heimann AS, Gomes I, Devi LA. Comb Chem High Throughput Screen 11 463-467 (2008)
  50. Methods used to study the oligomeric structure of G-protein-coupled receptors. Guo H, An S, Ward R, Yang Y, Liu Y, Guo XX, Hao Q, Xu TR. Biosci Rep 37 BSR20160547 (2017)
  51. Structural biology of G protein-coupled receptor signaling complexes. Edward Zhou X, Melcher K, Eric Xu H. Protein Sci 28 487-501 (2019)
  52. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. Stadel R, Ahn KH, Kendall DA. J Neurochem 117 1-18 (2011)
  53. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Tikhonova IG, Costanzi S. Curr Pharm Des 15 4003-4016 (2009)
  54. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GF, Struts AV. Photochem Photobiol 85 442-453 (2009)
  55. Understanding functional residues of the cannabinoid CB1. Shim JY. Curr Top Med Chem 10 779-798 (2010)
  56. Exogenous agents that target transmembrane domains of proteins. Yin H. Angew Chem Int Ed Engl 47 2744-2752 (2008)
  57. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. Brown MF, Salgado GF, Struts AV. Biochim Biophys Acta 1798 177-193 (2010)
  58. Spatial Intensity Distribution Analysis: Studies of G Protein-Coupled Receptor Oligomerisation. Pediani JD, Ward RJ, Marsango S, Milligan G. Trends Pharmacol Sci 39 175-186 (2018)
  59. What site-directed labeling studies tell us about the mechanism of rhodopsin activation and G-protein binding. Farrens DL. Photochem Photobiol Sci 9 1466-1474 (2010)
  60. Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Schonenbach NS, Hussain S, O'Malley MA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 408-427 (2015)
  61. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Suga H, Haga T. Neurochem Int 51 140-164 (2007)
  62. Rhodopsin: structure, signal transduction and oligomerisation. Morris MB, Dastmalchi S, Church WB. Int J Biochem Cell Biol 41 721-724 (2009)
  63. Structure-based studies of chemokine receptors. Zhu L, Zhao Q, Wu B. Curr Opin Struct Biol 23 539-546 (2013)
  64. Implications of short time scale dynamics on long time processes. El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Struct Dyn 4 061507 (2017)
  65. Pituitary glycoprotein hormone receptors in non-endocrine organs. Blair HC, Wells A, Isales CM. Trends Endocrinol Metab 18 227-233 (2007)
  66. Insights into the activation mechanism of the visual receptor rhodopsin. Smith SO. Biochem Soc Trans 40 389-393 (2012)
  67. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors. Lindner R, Heintz U, Winkler A. Front Mol Biosci 2 33 (2015)
  68. Identifying G protein-coupled receptor dimers from crystal packings. Stenkamp RE. Acta Crystallogr D Struct Biol 74 655-670 (2018)
  69. Structural aspects of rod opsin and their implication in genetic diseases. Fanelli F, Felline A, Marigo V. Pflugers Arch 473 1339-1359 (2021)
  70. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. Johnston JM, Filizola M. Adv Exp Med Biol 796 95-125 (2014)
  71. Polymorphisms determine beta-adrenoceptor conformation: implications for cardiovascular disease and therapy. Ahles A, Engelhardt S. Trends Pharmacol Sci 30 188-193 (2009)
  72. Structural biology of 11-cis-retinaldehyde production in the classical visual cycle. Daruwalla A, Choi EH, Palczewski K, Kiser PD. Biochem J 475 3171-3188 (2018)
  73. The cytoplasmic rhodopsin-protein interface: potential for drug discovery. Yanamala N, Gardner E, Riciutti A, Klein-Seetharaman J. Curr Drug Targets 13 3-14 (2012)
  74. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. Ortega JT, Jastrzebska B. Adv Exp Med Biol 1371 61-77 (2022)
  75. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Miyaguchi K. Biol Cell 106 323-345 (2014)
  76. Post-Translational Modifications of G Protein-Coupled Receptors Revealed by Proteomics and Structural Biology. Zhang B, Li S, Shui W. Front Chem 10 843502 (2022)
  77. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Park PS. Pflugers Arch 473 1361-1376 (2021)
  78. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Hong JD, Palczewski K. Bioessays 45 e2300068 (2023)

Articles citing this publication (173)

  1. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. Science 318 1258-1265 (2007)
  2. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK. Nature 450 383-387 (2007)
  3. Crystal structure of opsin in its G-protein-interacting conformation. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP. Nature 455 497-502 (2008)
  4. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. Nature 454 183-187 (2008)
  5. Structure of the human κ-opioid receptor in complex with JDTic. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC. Nature 485 327-332 (2012)
  6. The structural basis of agonist-induced activation in constitutively active rhodopsin. Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, Schertler GF. Nature 471 656-660 (2011)
  7. Dopamine D2 receptors form higher order oligomers at physiological expression levels. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA. EMBO J 27 2293-2304 (2008)
  8. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Huang J, Chen S, Zhang JJ, Huang XY. Nat Struct Mol Biol 20 419-425 (2013)
  9. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Angel TE, Chance MR, Palczewski K. Proc Natl Acad Sci U S A 106 8555-8560 (2009)
  10. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M. Proc Natl Acad Sci U S A 104 10859-10864 (2007)
  11. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Ahuja S, Hornak V, Yan EC, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M. Nat Struct Mol Biol 16 168-175 (2009)
  12. Target flexibility: an emerging consideration in drug discovery and design. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA. J Med Chem 51 6237-6255 (2008)
  13. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Angel TE, Gupta S, Jastrzebska B, Palczewski K, Chance MR. Proc Natl Acad Sci U S A 106 14367-14372 (2009)
  14. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. J Am Chem Soc 134 10959-10965 (2012)
  15. Sequence of late molecular events in the activation of rhodopsin. Knierim B, Hofmann KP, Ernst OP, Hubbell WL. Proc Natl Acad Sci U S A 104 20290-20295 (2007)
  16. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K. J Mol Biol 381 478-486 (2008)
  17. A ligand channel through the G protein coupled receptor opsin. Hildebrand PW, Scheerer P, Park JH, Choe HW, Piechnick R, Ernst OP, Hofmann KP, Heck M. PLoS One 4 e4382 (2009)
  18. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA. EMBO Rep 9 363-369 (2008)
  19. Modern homology modeling of G-protein coupled receptors: which structural template to use? Mobarec JC, Sanchez R, Filizola M. J Med Chem 52 5207-5216 (2009)
  20. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L. J Mol Biol 405 584-606 (2011)
  21. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuéllar F, Mocci G, Seto J, Callado LF, Callado LF, Neve RL, Milligan G, Sealfon SC, López-Giménez JF, Meana JJ, Benson DL, González-Maeso J. J Biol Chem 287 44301-44319 (2012)
  22. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A. Structure 23 628-638 (2015)
  23. Location of the retinal chromophore in the activated state of rhodopsin*. Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A, Ziliox M, Syrett N, Reeves PJ, Khorana HG, Sheves M, Smith SO. J Biol Chem 284 10190-10201 (2009)
  24. Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties. Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H. PLoS Comput Biol 8 e1002473 (2012)
  25. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC. Proc Natl Acad Sci U S A 106 12471-12476 (2009)
  26. Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors. Rediger A, Piechowski CL, Yi CX, Tarnow P, Strotmann R, Grüters A, Krude H, Schöneberg T, Tschöp MH, Kleinau G, Biebermann H. J Biol Chem 286 39623-39631 (2011)
  27. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Bhattacharya S, Hall SE, Li H, Vaidehi N. Biophys J 94 2027-2042 (2008)
  28. Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H. Proteins 76 403-417 (2009)
  29. Highly conserved tyrosine stabilizes the active state of rhodopsin. Goncalves JA, South K, Ahuja S, Zaitseva E, Opefi CA, Eilers M, Vogel R, Reeves PJ, Smith SO. Proc Natl Acad Sci U S A 107 19861-19866 (2010)
  30. Insights into signaling from the beta2-adrenergic receptor structure. Audet M, Bouvier M. Nat Chem Biol 4 397-403 (2008)
  31. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. Binet V, Duthey B, Lecaillon J, Vol C, Quoyer J, Labesse G, Pin JP, Prézeau L. J Biol Chem 282 12154-12163 (2007)
  32. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. Tam BM, Moritz OL. J Neurosci 29 15145-15154 (2009)
  33. Design, synthesis, and biological evaluation of 6alpha- and 6beta-N-heterocyclic substituted naltrexamine derivatives as mu opioid receptor selective antagonists. Li G, Aschenbach LC, Chen J, Cassidy MP, Stevens DL, Gabra BH, Selley DE, Dewey WL, Westkaemper RB, Zhang Y. J Med Chem 52 1416-1427 (2009)
  34. Oligomeric forms of G protein-coupled receptors (GPCRs). Palczewski K. Trends Biochem Sci 35 595-600 (2010)
  35. Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Knepp AM, Periole X, Marrink SJ, Sakmar TP, Huber T. Biochemistry 51 1819-1821 (2012)
  36. Asymmetry of the rhodopsin dimer in complex with transducin. Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K. FASEB J 27 1572-1584 (2013)
  37. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, Palczewski K. Proc Natl Acad Sci U S A 109 E2747-56 (2012)
  38. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. Worth CL, Kleinau G, Krause G. PLoS One 4 e7011 (2009)
  39. Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Isin B, Schulten K, Tajkhorshid E, Bahar I. Biophys J 95 789-803 (2008)
  40. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. Proc Natl Acad Sci U S A 112 E1659-68 (2015)
  41. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K. J Biol Chem 290 25728-25744 (2015)
  42. Human infrared vision is triggered by two-photon chromophore isomerization. Palczewska G, Vinberg F, Stremplewski P, Bircher MP, Salom D, Komar K, Zhang J, Cascella M, Wojtkowski M, Kefalov VJ, Palczewski K. Proc Natl Acad Sci U S A 111 E5445-54 (2014)
  43. Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content. Soubias O, Niu SL, Mitchell DC, Gawrisch K. J Am Chem Soc 130 12465-12471 (2008)
  44. Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. Jastrzebska B, Ringler P, Lodowski DT, Moiseenkova-Bell V, Golczak M, Müller SA, Palczewski K, Engel A. J Struct Biol 176 387-394 (2011)
  45. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease. Lee S, Augustin S, Tatsuta T, Gerdes F, Langer T, Tsai FT. J Biol Chem 286 4404-4411 (2011)
  46. Structural rearrangements of rhodopsin subunits in a dimer complex: a molecular dynamics simulation study. Cordomí A, Perez JJ. J Biomol Struct Dyn 27 127-147 (2009)
  47. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Elife 6 e28505 (2017)
  48. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Zhao DY, Pöge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K. J Biol Chem 294 14215-14230 (2019)
  49. Pattern of intra-family hetero-oligomerization involving the G-protein-coupled secretin receptor. Harikumar KG, Morfis MM, Sexton PM, Miller LJ. J Mol Neurosci 36 279-285 (2008)
  50. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. Tsukamoto H, Farrens DL, Koyanagi M, Terakita A. J Biol Chem 284 20676-20683 (2009)
  51. Role of bulk water in hydrolysis of the rhodopsin chromophore. Jastrzebska B, Palczewski K, Golczak M. J Biol Chem 286 18930-18937 (2011)
  52. The rhodopsin-transducin complex houses two distinct rhodopsin molecules. Jastrzebska B, Ringler P, Palczewski K, Engel A. J Struct Biol 182 164-172 (2013)
  53. Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics. Provasi D, Filizola M. Biophys J 98 2347-2355 (2010)
  54. Mutations of the opsin gene (Y102H and I307N) lead to light-induced degeneration of photoreceptors and constitutive activation of phototransduction in mice. Budzynski E, Gross AK, McAlear SD, Peachey NS, Shukla M, He F, Edwards M, Won J, Hicks WL, Wensel TG, Naggert JK, Nishina PM. J Biol Chem 285 14521-14533 (2010)
  55. Structural determinants for ligand-receptor conformational selection in a peptide G protein-coupled receptor. Lu ZL, Coetsee M, White CD, Millar RP. J Biol Chem 282 17921-17929 (2007)
  56. Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Struts AV, Salgado GF, Brown MF. Proc Natl Acad Sci U S A 108 8263-8268 (2011)
  57. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Johnston CA, Siderovski DP. Proc Natl Acad Sci U S A 104 2001-2006 (2007)
  58. Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor. Kleinau G, Jaeschke H, Mueller S, Raaka BM, Neumann S, Paschke R, Krause G. FASEB J 22 2798-2808 (2008)
  59. Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy. Claxton DP, Kazmier K, Mishra S, Mchaourab HS. Methods Enzymol 564 349-387 (2015)
  60. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. Fay JF, Farrens DL. J Biol Chem 287 33873-33882 (2012)
  61. Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. Sapra KT, Park PS, Palczewski K, Muller DJ. Langmuir 24 1330-1337 (2008)
  62. Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation. Kato A, Katada S, Touhara K. J Neurochem 107 1261-1270 (2008)
  63. Lecture Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Palczewski K. Invest Ophthalmol Vis Sci 55 6651-6672 (2014)
  64. Activation of the CXCR3 chemokine receptor through anchoring of a small molecule chelator ligand between TM-III, -IV, and -VI. Rosenkilde MM, Andersen MB, Nygaard R, Frimurer TM, Schwartz TW. Mol Pharmacol 71 930-941 (2007)
  65. Functional and structural roles of conserved cysteine residues in the carboxyl-terminal domain of the follicle-stimulating hormone receptor in human embryonic kidney 293 cells. Uribe A, Zariñán T, Pérez-Solis MA, Gutiérrez-Sagal R, Jardón-Valadez E, Piñeiro A, Dias JA, Ulloa-Aguirre A. Biol Reprod 78 869-882 (2008)
  66. Identification of Leu276 of the S1P1 receptor and Phe263 of the S1P3 receptor in interaction with receptor specific agonists by molecular modeling, site-directed mutagenesis, and affinity studies. Deng Q, Clemas JA, Chrebet G, Fischer P, Hale JJ, Li Z, Mills SG, Bergstrom J, Mandala S, Mosley R, Parent SA. Mol Pharmacol 71 724-735 (2007)
  67. research-article Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. Skrabanek L, Murcia M, Bouvier M, Devi L, George SR, Lohse MJ, Milligan G, Neubig R, Palczewski K, Parmentier M, Pin JP, Vriend G, Javitch JA, Campagne F, Filizola M. BMC Bioinformatics 8 177 (2007)
  68. Combined solid state and solution NMR studies of alpha,epsilon-15N labeled bovine rhodopsin. Werner K, Lehner I, Dhiman HK, Richter C, Glaubitz C, Schwalbe H, Klein-Seetharaman J, Khorana HG. J Biomol NMR 37 303-312 (2007)
  69. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Felce JH, Latty SL, Knox RG, Mattick SR, Lui Y, Lee SF, Klenerman D, Davis SJ. Cell Rep 20 2654-2665 (2017)
  70. Activation of the angiotensin II type 1 receptor leads to movement of the sixth transmembrane domain: analysis by the substituted cysteine accessibility method. Martin SS, Holleran BJ, Escher E, Guillemette G, Leduc R. Mol Pharmacol 72 182-190 (2007)
  71. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Proteins 81 1304-1317 (2013)
  72. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Yurugi-Kobayashi T, Asada H, Shiroishi M, Shimamura T, Funamoto S, Katsuta N, Ito K, Sugawara T, Tokuda N, Tsujimoto H, Murata T, Nomura N, Haga K, Haga T, Iwata S, Kobayashi T. Biochem Biophys Res Commun 380 271-276 (2009)
  73. Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin. Jastrzebska B, Golczak M, Fotiadis D, Engel A, Palczewski K. FASEB J 23 371-381 (2009)
  74. article-commentary Structural biology: A moving story of receptors. Schwartz TW, Hubbell WL. Nature 455 473-474 (2008)
  75. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. Ahuja S, Eilers M, Hirshfeld A, Yan EC, Ziliox M, Sakmar TP, Sheves M, Smith SO. J Am Chem Soc 131 15160-15169 (2009)
  76. Conformational activation of visual rhodopsin in native disc membranes. Malmerberg E, M Bovee-Geurts PH, Katona G, Deupi X, Arnlund D, Wickstrand C, Johansson LC, Westenhoff S, Nazarenko E, Schertler GF, Menzel A, de Grip WJ, Neutze R. Sci Signal 8 ra26 (2015)
  77. Different properties of the native and reconstituted heterotrimeric G protein transducin. Goc A, Angel TE, Jastrzebska B, Wang B, Wintrode PL, Palczewski K. Biochemistry 47 12409-12419 (2008)
  78. Production and characterization of monoclonal antibodies sensitive to conformation in the 5HT2c serotonin receptor. Mancia F, Brenner-Morton S, Siegel R, Assur Z, Sun Y, Schieren I, Mendelsohn M, Axel R, Hendrickson WA. Proc Natl Acad Sci U S A 104 4303-4308 (2007)
  79. A heterozygous mutation in the third transmembrane domain causes a dominant-negative effect on signalling capability of the MC4R. Tarnow P, Rediger A, Brumm H, Ambrugger P, Rettenbacher E, Widhalm K, Hinney A, Kleinau G, Schaefer M, Hebebrand J, Krause G, Grüters A, Biebermann H. Obes Facts 1 155-162 (2008)
  80. Atomistic insights into rhodopsin activation from a dynamic model. Tikhonova IG, Best RB, Engel S, Gershengorn MC, Hummer G, Costanzi S. J Am Chem Soc 130 10141-10149 (2008)
  81. FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Michino M, Chen J, Stevens RC, Brooks CL. Proteins 78 2189-2201 (2010)
  82. Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Parmar VK, Grinde E, Mazurkiewicz JE, Herrick-Davis K. Biochim Biophys Acta Biomembr 1859 1445-1455 (2017)
  83. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin. Kawamura S, Colozo AT, Müller DJ, Park PS. Biochemistry 49 10412-10420 (2010)
  84. Design and synthesis of a bivalent ligand to explore the putative heterodimerization of the mu opioid receptor and the chemokine receptor CCR5. Yuan Y, Arnatt CK, Li G, Haney KM, Ding D, Jacob JC, Selley DE, Zhang Y. Org Biomol Chem 10 2633-2646 (2012)
  85. From molecular details of the interplay between transmembrane helices of the thyrotropin receptor to general aspects of signal transduction in family a G-protein-coupled receptors (GPCRs). Kleinau G, Hoyer I, Kreuchwig A, Haas AK, Rutz C, Furkert J, Worth CL, Krause G, Schülein R. J Biol Chem 286 25859-25871 (2011)
  86. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop. Mokrosiński J, Frimurer TM, Sivertsen B, Schwartz TW, Holst B. J Biol Chem 287 33488-33502 (2012)
  87. Novel structural and functional insights into M3 muscarinic receptor dimer/oligomer formation. Hu J, Hu K, Liu T, Stern MK, Mistry R, Challiss RA, Costanzi S, Wess J. J Biol Chem 288 34777-34790 (2013)
  88. Post-activation-mediated changes in opioid receptors detected by N-terminal antibodies. Gupta A, Rozenfeld R, Gomes I, Raehal KM, Décaillot FM, Bohn LM, Devi LA. J Biol Chem 283 10735-10744 (2008)
  89. Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Pecic S, Makkar P, Chaudhary S, Reddy BV, Navarro HA, Harding WW. Bioorg Med Chem 18 5562-5575 (2010)
  90. Comparative docking study of anibamine as the first natural product CCR5 antagonist in CCR5 homology models. Li G, Haney KM, Kellogg GE, Zhang Y. J Chem Inf Model 49 120-132 (2009)
  91. Conformational selection and equilibrium governs the ability of retinals to bind opsin. Schafer CT, Farrens DL. J Biol Chem 290 4304-4318 (2015)
  92. Crystallizing thinking about the beta2-adrenergic receptor. Shukla AK, Sun JP, Lefkowitz RJ. Mol Pharmacol 73 1333-1338 (2008)
  93. Mechanism of activation of a G protein-coupled receptor, the human cholecystokinin-2 receptor. Marco E, Foucaud M, Langer I, Escrieut C, Tikhonova IG, Fourmy D. J Biol Chem 282 28779-28790 (2007)
  94. News A crystal clear view of the beta2-adrenergic receptor. Lefkowitz RJ, Sun JP, Shukla AK. Nat Biotechnol 26 189-191 (2008)
  95. Coupling of retinal, protein, and water dynamics in squid rhodopsin. Jardón-Valadez E, Bondar AN, Tobias DJ. Biophys J 99 2200-2207 (2010)
  96. Modeling Complexes of Transmembrane Proteins: Systematic Analysis of ProteinProtein Docking Tools. Kaczor AA, Selent J, Sanz F, Pastor M. Mol Inform 32 717-733 (2013)
  97. Conformational changes in the g protein-coupled receptor rhodopsin revealed by histidine hydrogen-deuterium exchange. Lodowski DT, Palczewski K, Miyagi M. Biochemistry 49 9425-9427 (2010)
  98. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. Yuzlenko O, Kieć-Kononowicz K. J Comput Chem 30 14-32 (2009)
  99. Monomeric dark rhodopsin holds the molecular determinants for transducin recognition: insights from computational analysis. Dell'Orco D, Seeber M, Fanelli F. FEBS Lett 581 944-948 (2007)
  100. Novel screening assay for the selective detection of G-protein-coupled receptor heteromer signaling. van Rijn RM, Harvey JH, Brissett DI, DeFriel JN, Whistler JL. J Pharmacol Exp Ther 344 179-188 (2013)
  101. Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins. Preininger AM, Parello J, Meier SM, Liao G, Hamm HE. Biochemistry 47 10281-10293 (2008)
  102. Dimerization of visual pigments in vivo. Zhang T, Cao LH, Kumar S, Enemchukwu NO, Zhang N, Lambert A, Zhao X, Jones A, Wang S, Dennis EM, Fnu A, Ham S, Rainier J, Yau KW, Fu Y. Proc Natl Acad Sci U S A 113 9093-9098 (2016)
  103. Gonadotropin-releasing hormone analog structural determinants of selectivity for inhibition of cell growth: support for the concept of ligand-induced selective signaling. López de Maturana R, Pawson AJ, Lu ZL, Davidson L, Maudsley S, Morgan K, Langdon SP, Millar RP. Mol Endocrinol 22 1711-1722 (2008)
  104. Modulating G-protein coupled receptor/G-protein signal transduction by small molecules suggested by virtual screening. Taylor CM, Barda Y, Kisselev OG, Marshall GR. J Med Chem 51 5297-5303 (2008)
  105. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Curr Neuropharmacol 17 891-911 (2019)
  106. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. Biochemistry 57 5188-5201 (2018)
  107. Critical role of electrostatic interactions of amino acids at the cytoplasmic region of helices 3 and 6 in rhodopsin conformational properties and activation. Ramon E, Cordomí A, Bosch L, Zernii EY, Senin II, Manyosa J, Philippov PP, Pérez JJ, Garriga P. J Biol Chem 282 14272-14282 (2007)
  108. Imaging of protein crystals with two-photon microscopy. Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D. Biochemistry 51 1625-1637 (2012)
  109. Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Rai BK, Tawa GJ, Katz AH, Humblet C. Proteins 78 457-473 (2010)
  110. Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. Rivalta I, Nenov A, Weingart O, Cerullo G, Garavelli M, Mukamel S. J Phys Chem B 118 8396-8405 (2014)
  111. Prokaryotic expression, in vitro folding, and molecular pharmacological characterization of the neuropeptide Y receptor type 2. Schmidt P, Lindner D, Montag C, Berndt S, Beck-Sickinger AG, Rudolph R, Huster D. Biotechnol Prog 25 1732-1739 (2009)
  112. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Han DS, Wang SX, Weinstein H. Biochemistry 47 7317-7321 (2008)
  113. Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors. Madathil S, Fahmy K. J Biol Chem 284 28801-28809 (2009)
  114. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Seno K, Hayashi F. J Biol Chem 292 15321-15328 (2017)
  115. Potential modes of interaction of 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives with the 5-HT2A receptor: a ligand structure-affinity relationship, receptor mutagenesis and receptor modeling investigation. Runyon SP, Mosier PD, Roth BL, Glennon RA, Westkaemper RB. J Med Chem 51 6808-6828 (2008)
  116. Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study. Greife A, Felekyan S, Ma Q, Gertzen CG, Spomer L, Dimura M, Peulen TO, Wöhler C, Häussinger D, Gohlke H, Keitel V, Seidel CA. Sci Rep 6 36792 (2016)
  117. Engineering of an artificial light-modulated potassium channel. Caro LN, Moreau CJ, Estrada-Mondragón A, Ernst OP, Vivaudou M. PLoS One 7 e43766 (2012)
  118. Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Rivalta I, Nenov A, Garavelli M. Phys Chem Chem Phys 16 16865-16879 (2014)
  119. Molecular modeling aided design of nicotinic acid receptor GPR109A agonists. Deng Q, Frie JL, Marley DM, Beresis RT, Ren N, Cai TQ, Taggart AK, Cheng K, Carballo-Jane E, Wang J, Tong X, Waters MG, Tata JR, Colletti SL. Bioorg Med Chem Lett 18 4963-4967 (2008)
  120. Surface charge changes upon formation of the signaling state in visual rhodopsin. Möller M, Alexiev U. Photochem Photobiol 85 501-508 (2009)
  121. 14-O-Heterocyclic-substituted naltrexone derivatives as non-peptide mu opioid receptor selective antagonists: design, synthesis, and biological studies. Li G, Aschenbach LC, He H, Selley DE, Zhang Y. Bioorg Med Chem Lett 19 1825-1829 (2009)
  122. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Fidom K, Isberg V, Hauser AS, Mordalski S, Lehto T, Bojarski AJ, Gloriam DE. Methods 71 104-112 (2015)
  123. Aberrant transcription of the LHCGR gene caused by a mutation in exon 6A leads to Leydig cell hypoplasia type II. Kossack N, Troppmann B, Richter-Unruh A, Kleinau G, Gromoll J. Mol Cell Endocrinol 366 59-67 (2013)
  124. Activation induces structural changes in the liganded angiotensin II type 1 receptor. Clément M, Cabana J, Holleran BJ, Leduc R, Guillemette G, Lavigne P, Escher E. J Biol Chem 284 26603-26612 (2009)
  125. Alpha-helical topology prediction and generation of distance restraints in membrane proteins. McAllister SR, Floudas CA. Biophys J 95 5281-5295 (2008)
  126. Dark and photoactivated rhodopsin share common binding modes to transducin. Fanelli F, Dell'orco D. FEBS Lett 582 991-996 (2008)
  127. Design and development of stapled transmembrane peptides that disrupt the activity of G-protein-coupled receptor oligomers. Botta J, Bibic L, Killoran P, McCormick PJ, Howell LA. J Biol Chem 294 16587-16603 (2019)
  128. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA, Palczewski K. Biochemistry 51 214-224 (2012)
  129. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin. Ren Z, Ren PX, Balusu R, Yang X. Sci Rep 6 34129 (2016)
  130. CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity. McGovern DL, Mosier PD, Roth BL, Westkaemper RB. J Mol Graph Model 28 612-625 (2010)
  131. Crystallization of G protein-coupled receptors. Salom D, Padayatti PS, Palczewski K. Methods Cell Biol 117 451-468 (2013)
  132. Identification of a novel ligand binding residue Arg38(1.35) in the human gonadotropin-releasing hormone receptor. Stewart AJ, Sellar R, Wilson DJ, Millar RP, Lu ZL. Mol Pharmacol 73 75-81 (2008)
  133. Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. J Comput Aided Mol Des 30 489-512 (2016)
  134. On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy. Komolov KE, Aguilà M, Toledo D, Manyosa J, Garriga P, Koch KW. Anal Bioanal Chem 397 2967-2976 (2010)
  135. Advances in the Development and Application of Computational Methodologies for Structural Modeling of G-Protein Coupled Receptors. Mobarec JC, Filizola M. Expert Opin Drug Discov 3 343-355 (2008)
  136. Crystallization and crystal properties of squid rhodopsin. Murakami M, Kitahara R, Gotoh T, Kouyama T. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 475-479 (2007)
  137. Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Déméné H. J Mol Biol 388 491-507 (2009)
  138. The G protein-coupled receptor rhodopsin: a historical perspective. Hofmann L, Palczewski K. Methods Mol Biol 1271 3-18 (2015)
  139. Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants. Sakai K, Imamoto Y, Yamashita T, Shichida Y. Photochem Photobiol Sci 9 1490-1497 (2010)
  140. Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering. Imamoto Y, Kojima K, Oka T, Maeda R, Shichida Y. Photochem Photobiol Sci 14 1965-1973 (2015)
  141. Use of multidimensional fluorescence resonance energy transfer to establish the orientation of cholecystokinin docked at the type A cholecystokinin receptor. Harikumar KG, Gao F, Pinon DI, Miller LJ. Biochemistry 47 9574-9581 (2008)
  142. Homotrimer formation and dissociation of pharaonis halorhodopsin in detergent system. Tsukamoto T, Sasaki T, Fujimoto KJ, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Biophys J 102 2906-2915 (2012)
  143. New tensio-active molecules stabilize a human G protein-coupled receptor in solution. Damian M, Perino S, Polidori A, Martin A, Serre L, Pucci B, Banères JL. FEBS Lett 581 1944-1950 (2007)
  144. Specificity of the chromophore-binding site in human cone opsins. Katayama K, Gulati S, Ortega JT, Alexander NS, Sun W, Shenouda MM, Palczewski K, Jastrzebska B. J Biol Chem 294 6082-6093 (2019)
  145. Structural determinants of the alpha2 adrenoceptor subtype selectivity. Ostopovici-Halip L, Curpăn R, Mracec M, Bologa CG. J Mol Graph Model 29 1030-1038 (2011)
  146. Application of the fuzzy-oil-drop model to membrane protein simulation. Zobnina V, Roterman I. Proteins 77 378-394 (2009)
  147. Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Hofmann L, Alexander NS, Sun W, Zhang J, Orban T, Palczewski K. Biochemistry 56 2338-2348 (2017)
  148. Ligand-supported purification of the urotensin-II receptor. Du AT, Onan D, Dinh DT, Lew MJ, Ziogas J, Aguilar MI, Pattenden LK, Thomas WG. Mol Pharmacol 78 639-647 (2010)
  149. Rhodopsin's active state is frozen like a DEER in the headlights. Huber T, Sakmar TP. Proc Natl Acad Sci U S A 105 7343-7344 (2008)
  150. Role of the extracellular amino terminus and first membrane-spanning helix of dopamine D1 and D5 receptors in shaping ligand selectivity and efficacy. D'Aoust JP, Tiberi M. Cell Signal 22 106-116 (2010)
  151. Theoretical study of the human bradykinin-bradykinin B2 receptor complex. Gieldon A, Lopez JJ, Glaubitz C, Schwalbe H. Chembiochem 9 2487-2497 (2008)
  152. Defining the interface between the C-terminal fragment of alpha-transducin and photoactivated rhodopsin. Taylor CM, Nikiforovich GV, Marshall GR. Biophys J 92 4325-4334 (2007)
  153. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations. Yamazaki Y, Nagata T, Terakita A, Kandori H, Shichida Y, Imamoto Y. J Biol Chem 289 13792-13800 (2014)
  154. Simplified modeling approach suggests structural mechanisms for constitutive activation of the C5a receptor. Nikiforovich GV, Marshall GR, Baranski TJ. Proteins 79 787-802 (2011)
  155. Structure-based simulations reveal concerted dynamics of GPCR activation. Leioatts N, Suresh P, Romo TD, Grossfield A. Proteins 82 2538-2551 (2014)
  156. A model for how Gβγ couples Gα to GPCR. McIntire WE. J Gen Physiol 154 e202112982 (2022)
  157. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A. PLoS One 15 e0226123 (2020)
  158. Docking studies suggest ligand-specific delta-opioid receptor conformations. Micovic V, Ivanovic MD, Dosen-Micovic L. J Mol Model 15 267-280 (2009)
  159. G protein-coupled receptor activation: amino acid movements caught infra-red-handed. Hoffmann C. Chembiochem 11 2247-2249 (2010)
  160. Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant. Sandberg MN, Greco JA, Wagner NL, Amora TL, Ramos LA, Chen MH, Knox BE, Birge RR. SOJ Biochem 1 12 (2014)
  161. Stereospecific modulation of dimeric rhodopsin. Getter T, Gulati S, Zimmerman R, Chen Y, Vinberg F, Palczewski K. FASEB J 33 9526-9539 (2019)
  162. Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis. Novikov GV, Sivozhelezov VS, Shaitan KV. Biochemistry (Mosc) 78 403-411 (2013)
  163. Toward the three-dimensional structure and lysophosphatidic acid binding characteristics of the LPA(4)/p2y(9)/GPR23 receptor: a homology modeling study. Li G, Mosier PD, Fang X, Zhang Y. J Mol Graph Model 28 70-79 (2009)
  164. G-protein-coupled receptor structure: what can we learn? Tobin AB. F1000 Biol Rep 1 11 (2009)
  165. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach. Simón-Vázquez R, Domínguez M, Lórenz-Fonfría VA, Alvarez S, Bourdelande JL, de Lera AR, Padrós E, Perálvarez-Marín A. PLoS One 7 e42447 (2012)
  166. Structural biology: Arresting developments in receptor signalling. Benovic JL. Nature 523 538-539 (2015)
  167. Study of visual pigment rhodopsin supramolecular organization in photoreceptor membrane by small-angle neutron scattering method with contrast variation. Feldman TB, Ivankov OI, Murugova TN, Kuklin AI, Shelyakin PV, Yakovleva MA, Gordeliy VI, Belushkin AV, Ostrovsky MA. Dokl Biochem Biophys 465 420-423 (2015)
  168. Bioorthogonal Tethering Enhances Drug Fragment Affinity for G Protein-Coupled Receptors in Live Cells. Mattheisen JM, Limberakis C, Ruggeri RB, Dowling MS, Am Ende CW, Ceraudo E, Huber T, McClendon CL, Sakmar TP. J Am Chem Soc 145 11173-11184 (2023)
  169. Functional optimization of light-activatable Opto-GPCRs: Illuminating the importance of the proximal C-terminus in G-protein specificity. Leemann S, Kleinlogel S. Front Cell Dev Biol 11 1053022 (2023)
  170. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. Verma DK, Malhotra H, Woellert T, Calvert PD. J Biol Chem 299 105412 (2023)
  171. Improving the Modeling of Extracellular Ligand Binding Pockets in RosettaGPCR for Conformational Selection. Liessmann F, Künze G, Meiler J. Int J Mol Sci 24 7788 (2023)
  172. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. eNeuro 10 ENEURO.0330-22.2023 (2023)
  173. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Nat Commun 14 5209 (2023)