2i19 Citations

Solid-state NMR, crystallographic, and computational investigation of bisphosphonates and farnesyl diphosphate synthase-bisphosphonate complexes.

J Am Chem Soc 128 14485-97 (2006)
Cited: 41 times
EuropePMC logo PMID: 17090032

Abstract

Bisphosphonates are a class of molecules in widespread use in treating bone resorption diseases and are also of interest as immunomodulators and anti-infectives. They function by inhibiting the enzyme farnesyl diphosphate synthase (FPPS), but the details of how these molecules bind are not fully understood. Here, we report the results of a solid-state (13)C, (15)N, and (31)P magic-angle sample spinning (MAS) NMR and quantum chemical investigation of several bisphosphonates, both as pure compounds and when bound to FPPS, to provide information about side-chain and phosphonate backbone protonation states when bound to the enzyme. We then used computational docking methods (with the charges assigned by NMR) to predict how several bisphosphonates bind to FPPS. Finally, we used X-ray crystallography to determine the structures of two potent bisphosphonate inhibitors, finding good agreement with the computational results, opening up the possibility of using the combination of NMR, quantum chemistry and molecular docking to facilitate the design of other, novel prenytransferase inhibitors.

Reviews - 2i19 mentioned but not cited (1)

Articles - 2i19 mentioned but not cited (2)

  1. Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design. Durrant JD, Cao R, Gorfe AA, Zhu W, Li J, Sankovsky A, Oldfield E, McCammon JA. Chem Biol Drug Des 78 323-332 (2011)
  2. Structural model for phenylalkylamine binding to L-type calcium channels. Cheng RCK, Tikhonov DB, Zhorov BS. J Biol Chem 284 28332-28342 (2009)


Reviews citing this publication (6)

  1. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Osteoporos Int 19 733-759 (2008)
  2. Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Ohno K, Mori K, Orita M, Takeuchi M. Curr Med Chem 18 220-233 (2011)
  3. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Docampo R, Moreno SN. Curr Pharm Des 14 882-888 (2008)
  4. Computational investigations of HNO in biology. Zhang Y. J Inorg Biochem 118 191-200 (2013)
  5. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Front Chem 8 612728 (2020)
  6. Targeting prenylation inhibition through the mevalonate pathway. Manaswiyoungkul P, de Araujo ED, Gunning PT. RSC Med Chem 11 51-71 (2020)

Articles citing this publication (32)

  1. Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Guo RT, Cao R, Liang PH, Ko TP, Chang TH, Hudock MP, Jeng WY, Chen CK, Zhang Y, Song Y, Kuo CJ, Yin F, Oldfield E, Wang AH. Proc Natl Acad Sci U S A 104 10022-10027 (2007)
  2. Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. Zhang Y, Cao R, Yin F, Hudock MP, Guo RT, Krysiak K, Mukherjee S, Gao YG, Robinson H, Song Y, No JH, Bergan K, Leon A, Cass L, Goddard A, Chang TK, Lin FY, Van Beek E, Papapoulos S, Wang AH, Kubo T, Ochi M, Mukkamala D, Oldfield E. J Am Chem Soc 131 5153-5162 (2009)
  3. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases. Aaron JA, Christianson DW. Pure Appl Chem 82 1585-1597 (2010)
  4. Mechanism of action and inhibition of dehydrosqualene synthase. Lin FY, Liu CI, Liu YL, Zhang Y, Wang K, Jeng WY, Ko TP, Cao R, Wang AH, Oldfield E. Proc Natl Acad Sci U S A 107 21337-21342 (2010)
  5. Phosphonosulfonates are potent, selective inhibitors of dehydrosqualene synthase and staphyloxanthin biosynthesis in Staphylococcus aureus. Song Y, Lin FY, Yin F, Hensler M, Rodrígues Poveda CA, Mukkamala D, Cao R, Wang H, Morita CT, González Pacanowska D, Nizet V, Oldfield E. J Med Chem 52 976-988 (2009)
  6. Novel biomineral-binding cyclodextrins for controlled drug delivery in the oral cavity. Liu XM, Lee HT, Reinhardt RA, Marky LA, Wang D. J Control Release 122 54-62 (2007)
  7. Farnesyl diphosphate synthase inhibitors from in silico screening. Lindert S, Zhu W, Liu YL, Pang R, Oldfield E, McCammon JA. Chem Biol Drug Des 81 742-748 (2013)
  8. Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases. Cao R, Chen CK, Guo RT, Wang AH, Oldfield E. Proteins 73 431-439 (2008)
  9. Chemo-Immunotherapeutic Anti-Malarials Targeting Isoprenoid Biosynthesis. Zhang Y, Zhu W, Liu YL, Wang H, Wang K, Li K, No JH, Ayong L, Gulati A, Pang R, Freitas-Junior L, Morita CT, Old-Field E. ACS Med Chem Lett 4 423-427 (2013)
  10. HNO binding in a heme protein: structures, spectroscopic properties, and stabilities. Yang L, Ling Y, Zhang Y. J Am Chem Soc 133 13814-13817 (2011)
  11. Bisphosphonate prodrugs: synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Monteil M, Migianu-Griffoni E, Sainte-Catherine O, Di Benedetto M, Lecouvey M. Eur J Med Chem 77 56-64 (2014)
  12. NMR, IR/Raman, and structural properties in HNO and RNO (R = alkyl and aryl) metalloporphyrins with implication for the HNO-myoglobin complex. Ling Y, Mills C, Weber R, Yang L, Zhang Y. J Am Chem Soc 132 1583-1591 (2010)
  13. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. J Biol Chem 286 3729-3740 (2011)
  14. Farnesyl diphosphate synthase localizes to the cytoplasm of Trypanosoma cruzi and T. brucei. Ferella M, Li ZH, Andersson B, Docampo R. Exp Parasitol 119 308-312 (2008)
  15. New symmetrically esterified m-bromobenzyl non-aminobisphosphonates inhibited breast cancer growth and metastases. Abdelkarim M, Guenin E, Sainte-Catherine O, Vintonenko N, Peyri N, Perret GY, Crepin M, Khatib AM, Lecouvey M, Di Benedetto M. PLoS One 4 e4685 (2009)
  16. Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Liu YL, Lindert S, Zhu W, Wang K, McCammon JA, Oldfield E. Proc Natl Acad Sci U S A 111 E2530-9 (2014)
  17. Bisphosphonate inhibitors of ATP-mediated HIV-1 reverse transcriptase catalyzed excision of chain-terminating 3'-azido, 3'-deoxythymidine: a QSAR investigation. Song Y, Chan JM, Tovian Z, Secrest A, Nagy E, Krysiak K, Bergan K, Parniak MA, Oldfield E. Bioorg Med Chem 16 8959-8967 (2008)
  18. Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Ogungbe IV, Setzer WN. Molecules 14 1513-1536 (2009)
  19. NMR hyperfine shifts in blue copper proteins: a quantum chemical investigation. Zhang Y, Oldfield E. J Am Chem Soc 130 3814-3823 (2008)
  20. Discovery of potent inhibitor for farnesyl pyrophosphate synthase in the mevalonate pathway. Gao J, Chu X, Qiu Y, Wu L, Qiao Y, Wu J, Li D. Chem Commun (Camb) 46 5340-5342 (2010)
  21. Insights about the structure of farnesyl diphosphate synthase (FPPS) and the activity of bisphosphonates on the proliferation and ultrastructure of Leishmania and Giardia. Gadelha APR, Brigagao CM, da Silva MB, Rodrigues ABM, Guimarães ACR, Paiva F, de Souza W, Henriques C. Parasit Vectors 13 168 (2020)
  22. Multi-target-directed design, syntheses, and characterization of fluorescent bisphosphonate derivatives as multifunctional enzyme inhibitors in mevalonate pathway. Gao J, Liu J, Qiu Y, Chu X, Qiao Y, Li D. Biochim Biophys Acta 1830 3635-3642 (2013)
  23. Structural characterization of geranylgeranyl pyrophosphate synthase GACE1337 from the hyperthermophilic archaeon Geoglobus acetivorans. Petrova TE, Boyko KM, Nikolaeva AY, Stekhanova TN, Gruzdev EV, Mardanov AV, Stroilov VS, Littlechild JA, Popov VO, Bezsudnova EY. Extremophiles 22 877-888 (2018)
  24. Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. Malwal SR, Chen L, Hicks H, Qu F, Liu W, Shillo A, Law WX, Zhang J, Chandnani N, Han X, Zheng Y, Chen CC, Guo RT, AbdelKhalek A, Seleem MN, Oldfield E. J Med Chem 62 2564-2581 (2019)
  25. Farnesyl pyrophosphate synthase enantiospecificity with a chiral risedronate analog, [6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501): Synthetic, structural, and modeling studies. Deprèle S, Kashemirov BA, Hogan JM, Ebetino FH, Barnett BL, Evdokimov A, McKenna CE. Bioorg Med Chem Lett 18 2878-2882 (2008)
  26. Low-energy conformers of pamidronate and their intramolecular hydrogen bonds: a DFT and QTAIM study. Arabieh M, Karimi-Jafari MH, Ghannadi-Maragheh M. J Mol Model 19 427-438 (2013)
  27. Specificity of the zinc(II), magnesium(II) and calcium(II) complexation by (pyridin-2-yl)aminomethane-1,1-diphosphonic acids and related 1,3-(thiazol-2-yl) and 1,3-(benzothiazol-2-yl) derivatives. Matczak-Jon E, Kowalik-Jankowska T, Slepokura K, Kafarski P, Rajewska A. Dalton Trans 39 1207-1221 (2010)
  28. Deciphering the NMR fingerprints of the disordered system with quantum chemical studies. Ling Y, Zhang Y. J Phys Chem A 113 5993-5997 (2009)
  29. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds. Rorick A, Michael MA, Yang L, Zhang Y. J Phys Chem B 119 11618-11625 (2015)
  30. Zirconium bistriazolylpyridine phosphonate materials for efficient, selective An(iii)/Ln(iii) separations. Veliscek-Carolan J, Rawal A. Chem Commun (Camb) 55 1168-1171 (2019)
  31. Conformational and configurational analysis of an N,N carbonyl dipyrrinone-derived oximate and nitrone by NMR and quantum chemical calculations. Walton I, Davis M, Yang L, Zhang Y, Tillman D, Jarrett WL, Huggins MT, Wallace KJ. Magn Reson Chem 49 205-212 (2011)
  32. Metal-dependent enzyme symmetry guides the biosynthetic flux of terpene precursors. Ecker F, Vattekkatte A, Boland W, Groll M. Nat Chem 15 1188-1195 (2023)