1zmc Citations

Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations.

J Mol Biol 350 543-52 (2005)
Cited: 84 times
EuropePMC logo PMID: 15946682

Abstract

Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial alpha-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: non-covalently bound FAD and a transiently bound substrate, NAD+. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD+ or NADH have been determined at resolutions of 2.5A and 2.1A, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD+ bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD+ or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD(+)-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.

Articles - 1zmc mentioned but not cited (14)

  1. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Liao Y, Castello A, Fischer B, Leicht S, Föehr S, Frese CK, Ragan C, Kurscheid S, Pagler E, Yang H, Krijgsveld J, Hentze MW, Preiss T. Cell Rep 16 1456-1469 (2016)
  2. A new level of architectural complexity in the human pyruvate dehydrogenase complex. Smolle M, Prior AE, Brown AE, Cooper A, Byron O, Lindsay JG. J Biol Chem 281 19772-19780 (2006)
  3. Insight to the interaction of the dihydrolipoamide acetyltransferase (E2) core with the peripheral components in the Escherichia coli pyruvate dehydrogenase complex via multifaceted structural approaches. Chandrasekhar K, Wang J, Arjunan P, Sax M, Park YH, Nemeria NS, Kumaran S, Song J, Jordan F, Furey W. J Biol Chem 288 15402-15417 (2013)
  4. Mutations in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells. Vaubel RA, Rustin P, Isaya G. J Biol Chem 286 40232-40245 (2011)
  5. Genome-scale identification and characterization of moonlighting proteins. Khan I, Chen Y, Dong T, Hong X, Takeuchi R, Mori H, Kihara D. Biol Direct 9 30 (2014)
  6. Triazaspirodimethoxybenzoyls as selective inhibitors of mycobacterial lipoamide dehydrogenase . Bryk R, Arango N, Venugopal A, Warren JD, Park YH, Patel MS, Lima CD, Nathan C. Biochemistry 49 1616-1627 (2010)
  7. Detecting similar binding pockets to enable systems polypharmacology. Duran-Frigola M, Siragusa L, Ruppin E, Barril X, Cruciani G, Aloy P. PLoS Comput Biol 13 e1005522 (2017)
  8. Genetic Conservation of Phosphine Resistance in the Rice Weevil Sitophilus oryzae (L.). Nguyen TT, Collins PJ, Duong TM, Schlipalius DI, Ebert PR. J Hered 107 228-237 (2016)
  9. Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex. Brautigam CA, Wynn RM, Chuang JL, Naik MT, Young BB, Huang TH, Chuang DT. J Biol Chem 286 23476-23488 (2011)
  10. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: Implications for the structural basis of E3 deficiency. Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V. Biochim Biophys Acta 1862 2098-2109 (2016)
  11. Chronic Inhibition of Mitochondrial Dihydrolipoamide Dehydrogenase (DLDH) as an Approach to Managing Diabetic Oxidative Stress. Yang X, Song J, Yan LJ. Antioxidants (Basel) 8 E32 (2019)
  12. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum. Moxley MA, Beard DA, Bazil JN. J Biol Chem 291 2712-2730 (2016)
  13. Structural alterations by five disease-causing mutations in the low-pH conformation of human dihydrolipoamide dehydrogenase (hLADH) analyzed by molecular dynamics - Implications in functional loss and modulation of reactive oxygen species generation by pathogenic hLADH forms. Ambrus A, Mizsei R, Adam-Vizi V. Biochem Biophys Rep 2 50-56 (2015)
  14. Deriving and Using Descriptors of Elementary Functions in Rational Protein Design. Yin M, Goncearenco A, Berezovsky IN. Front Bioinform 1 657529 (2021)


Reviews citing this publication (12)

  1. The pyruvate dehydrogenase complexes: structure-based function and regulation. Patel MS, Nemeria NS, Furey W, Jordan F. J Biol Chem 289 16615-16623 (2014)
  2. Optical imaging using endogenous contrast to assess metabolic state. Georgakoudi I, Quinn KP. Annu Rev Biomed Eng 14 351-367 (2012)
  3. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. Yates CM, Sternberg MJ. J Mol Biol 425 3949-3963 (2013)
  4. Proteins with neomorphic moonlighting functions in disease. Jeffery CJ. IUBMB Life 63 489-494 (2011)
  5. Mitochondrial production of reactive oxygen species. Grivennikova VG, Vinogradov AD. Biochemistry (Mosc) 78 1490-1511 (2013)
  6. Human dihydrolipoamide dehydrogenase (E3) deficiency: Novel insights into the structural basis and molecular pathomechanism. Ambrus A, Adam-Vizi V. Neurochem Int 117 5-14 (2018)
  7. An Updated View on the Molecular Pathomechanisms of Human Dihydrolipoamide Dehydrogenase Deficiency in Light of Novel Crystallographic Evidence. Ambrus A. Neurochem Res 44 2307-2313 (2019)
  8. Nuclear magnetic resonance approaches in the study of 2-oxo acid dehydrogenase multienzyme complexes--a literature review. Kumaran S, Patel MS, Jordan F. Molecules 18 11873-11903 (2013)
  9. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Cell Mol Life Sci 78 7451-7468 (2021)
  10. Lipoamide dehydrogenase (LADH) deficiency: medical perspectives of the structural and functional characterization of LADH and its pathogenic variants. Szabó E, Ambrus A. Biol Futur 74 109-118 (2023)
  11. Roles of Dihydrolipoamide Dehydrogenase in Health and Disease. Yan LJ, Wang Y. Antioxid Redox Signal 39 794-806 (2023)
  12. Tissue Imaging and Quantification Relying on Endogenous Contrast. Liu Z, Meng J, Quinn KP, Georgakoudi I. Adv Exp Med Biol 3233 257-288 (2021)

Articles citing this publication (58)

  1. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Gelling C, Dawes IW, Richhardt N, Lill R, Mühlenhoff U. Mol Cell Biol 28 1851-1861 (2008)
  2. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Babady NE, Pang YP, Elpeleg O, Isaya G. Proc Natl Acad Sci U S A 104 6158-6163 (2007)
  3. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Kim Y, Ingram LO, Shanmugam KT. J Bacteriol 190 3851-3858 (2008)
  4. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Zhao Y, Miriyala S, Miao L, Mitov M, Schnell D, Dhar SK, Cai J, Klein JB, Sultana R, Butterfield DA, Vore M, Batinic-Haberle I, Bondada S, St Clair DK. Free Radic Biol Med 72 55-65 (2014)
  5. A core metabolic enzyme mediates resistance to phosphine gas. Schlipalius DI, Valmas N, Tuck AG, Jagadeesan R, Ma L, Kaur R, Goldinger A, Anderson C, Kuang J, Zuryn S, Mau YS, Cheng Q, Collins PJ, Nayak MK, Schirra HJ, Hilliard MA, Ebert PR. Science 338 807-810 (2012)
  6. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM. J Biol Chem 282 11893-11903 (2007)
  7. Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Brautigam CA, Wynn RM, Chuang JL, Machius M, Tomchick DR, Chuang DT. Structure 14 611-621 (2006)
  8. Histochemical staining and quantification of dihydrolipoamide dehydrogenase diaphorase activity using blue native PAGE. Yan LJ, Yang SH, Shu H, Prokai L, Forster MJ. Electrophoresis 28 1036-1045 (2007)
  9. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. Wynn RM, Kato M, Chuang JL, Tso SC, Li J, Chuang DT. J Biol Chem 283 25305-25315 (2008)
  10. How dihydrolipoamide dehydrogenase-binding protein binds dihydrolipoamide dehydrogenase in the human pyruvate dehydrogenase complex. Ciszak EM, Makal A, Hong YS, Vettaikkorumakankauv AK, Korotchkina LG, Patel MS. J Biol Chem 281 648-655 (2006)
  11. Controlled 2D crystallization of membrane proteins using methyl-beta-cyclodextrin. Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW. J Struct Biol 157 321-328 (2007)
  12. Stimulation of reactive oxygen species generation by disease-causing mutations of lipoamide dehydrogenase. Ambrus A, Torocsik B, Tretter L, Ozohanics O, Adam-Vizi V. Hum Mol Genet 20 2984-2995 (2011)
  13. Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. Brautigam CA, Wynn RM, Chuang JL, Chuang DT. J Biol Chem 284 13086-13098 (2009)
  14. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Yan LJ, Sumien N, Thangthaeng N, Forster MJ. Free Radic Res 47 123-133 (2013)
  15. TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Rapoport M, Saada A, Elpeleg O, Lorberboum-Galski H. Mol Ther 16 691-697 (2008)
  16. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Ambrus A, Nemeria NS, Torocsik B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V. Free Radic Biol Med 89 642-650 (2015)
  17. Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments. Padrick SB, Deka RK, Chuang JL, Wynn RM, Chuang DT, Norgard MV, Rosen MK, Brautigam CA. Anal Biochem 407 89-103 (2010)
  18. Human 2-oxoglutarate dehydrogenase complex E1 component forms a thiamin-derived radical by aerobic oxidation of the enamine intermediate. Nemeria NS, Ambrus A, Patel H, Gerfen G, Adam-Vizi V, Tretter L, Zhou J, Wang J, Jordan F. J Biol Chem 289 29859-29873 (2014)
  19. Solution structure and characterisation of the human pyruvate dehydrogenase complex core assembly. Vijayakrishnan S, Kelly SM, Gilbert RJ, Callow P, Bhella D, Forsyth T, Lindsay JG, Byron O. J Mol Biol 399 71-93 (2010)
  20. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. Rapoport M, Salman L, Sabag O, Patel MS, Lorberboum-Galski H. J Mol Med (Berl) 89 161-170 (2011)
  21. Changes in dihydrolipoamide dehydrogenase expression and activity during postnatal development and aging in the rat brain. Yan LJ, Thangthaeng N, Forster MJ. Mech Ageing Dev 129 282-290 (2008)
  22. Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Brassier A, Ottolenghi C, Boutron A, Bertrand AM, Valmary-Degano S, Cervoni JP, Chrétien D, Arnoux JB, Hubert L, Rabier D, Lacaille F, de Keyzer Y, Di Martino V, de Lonlay P. Mol Genet Metab 109 28-32 (2013)
  23. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD. J Biol Chem 280 33977-33983 (2005)
  24. Riboflavin responsive mitochondrial myopathy is a new phenotype of dihydrolipoamide dehydrogenase deficiency. The chaperon-like effect of vitamin B2. Carrozzo R, Torraco A, Fiermonte G, Martinelli D, Di Nottia M, Rizza T, Vozza A, Verrigni D, Diodato D, Parisi G, Maiorana A, Rizzo C, Pierri CL, Zucano S, Piemonte F, Bertini E, Dionisi-Vici C. Mitochondrion 18 49-57 (2014)
  25. Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase. Ambrus A, Adam-Vizi V. Arch Biochem Biophys 538 145-155 (2013)
  26. Crystal structure of aminomethyltransferase in complex with dihydrolipoyl-H-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H. J Biol Chem 285 18684-18692 (2010)
  27. Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex. Patel MS, Korotchkina LG, Sidhu S. J Mol Catal B Enzym 61 2-6 (2009)
  28. Chemical modification and organelle-specific localization of orlistat-like natural-product-based probes. Yang PY, Liu K, Zhang C, Chen GY, Shen Y, Ngai MH, Lear MJ, Yao SQ. Chem Asian J 6 2762-2775 (2011)
  29. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Pseudomonas aeruginosa Catalyze Pyocyanin and Phenazine-1-carboxylic Acid Reduction via the Subunit Dihydrolipoamide Dehydrogenase. Glasser NR, Wang BX, Hoy JA, Newman DK. J Biol Chem 292 5593-5607 (2017)
  30. Cardiomyopathy of Friedreich's ataxia: use of mouse models to understand human disease and guide therapeutic development. Payne RM, Pride PM, Babbey CM. Pediatr Cardiol 32 366-378 (2011)
  31. DNA microarray analysis of genes differentially expressed in adipocyte differentiation. Yin C, Xiao Y, Zhang W, Xu E, Liu W, Yi X, Chang M. J Biosci 39 415-423 (2014)
  32. ATP synthase subunit alpha and LV mass in ischaemic human hearts. Roselló-Lletí E, Tarazón E, Barderas MG, Ortega A, Molina-Navarro MM, Martínez A, Lago F, Martínez-Dolz L, González-Juanatey JR, Salvador A, Portolés M, Rivera M. J Cell Mol Med 19 442-451 (2015)
  33. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Kaur R, Subbarayalu M, Jagadeesan R, Daglish GJ, Nayak MK, Naik HR, Ramasamy S, Subramanian C, Ebert PR, Schlipalius DI. Heredity (Edinb) 115 188-194 (2015)
  34. Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt. Yan LJ, Liu L, Forster MJ. Sheng Wu Wu Li Hsueh Bao 28 341-350 (2012)
  35. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy. Roselló-Lletí E, Tarazón E, Barderas MG, Ortega A, Otero M, Molina-Navarro MM, Lago F, González-Juanatey JR, Salvador A, Portolés M, Rivera M. PLoS One 9 e112971 (2014)
  36. Periplasmic cold expression and one-step purification of human dihydrolipoamide dehydrogenase. Ambrus A, Torocsik B, Adam-Vizi V. Protein Expr Purif 63 50-57 (2009)
  37. TAT opens the door. Vyas PM, Payne RM. Mol Ther 16 647-648 (2008)
  38. Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants. Szabo E, Wilk P, Nagy B, Zambo Z, Bui D, Weichsel A, Arjunan P, Torocsik B, Hubert A, Furey W, Montfort WR, Jordan F, Weiss MS, Adam-Vizi V, Ambrus A. Hum Mol Genet 28 3339-3354 (2019)
  39. Irc15 Is a microtubule-associated protein that regulates microtubule dynamics in Saccharomyces cerevisiae. Keyes BE, Burke DJ. Curr Biol 19 472-478 (2009)
  40. Cloning and purification of recombinant silkworm dihydrolipoamide dehydrogenase expressed in Escherichia coli. Huo J, Shi H, Yao Q, Chen H, Wang L, Chen K. Protein Expr Purif 72 95-100 (2010)
  41. The role of N286 and D320 in the reaction mechanism of human dihydrolipoamide dehydrogenase (E3) center domain. Wang YC, Wang ST, Li C, Liu WH, Chen PR, Chen LY, Liu TC. J Biomed Sci 14 203-210 (2007)
  42. Amino acid substitutions at glutamate-354 in dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH. Sun Z, Do PM, Rhee MS, Govindasamy L, Wang Q, Ingram LO, Shanmugam KT. Microbiology (Reading) 158 1350-1358 (2012)
  43. Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes. Nakai T, Kuramitsu S, Kamiya N. J Biochem 143 747-758 (2008)
  44. Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2·E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance. Wang J, Kumaran S, Zhou J, Nemeria NS, Tao H, Kakalis L, Park YH, Birkaya B, Patel MS, Jordan F. Biochemistry 54 69-82 (2015)
  45. Mitochondrial Dihydrolipoamide Dehydrogenase is Upregulated in Response to Intermittent Hypoxic Preconditioning. Li R, Luo X, Wu J, Thangthaeng N, Jung ME, Jing S, Li L, Ellis DZ, Liu L, Ding Z, Forster MJ, Yan LJ. Int J Med Sci 12 432-440 (2015)
  46. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site. Dayan A, Babin G, Ganoth A, Kayouf NS, Nitoker Eliaz N, Mukkala S, Tsfadia Y, Fleminger G. J Mol Recognit 30 (2017)
  47. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms. Moxley MA, Beard DA, Bazil JN. Biophys J 107 2993-3007 (2014)
  48. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria. Marcus D, Lichtenstein M, Cohen N, Hadad R, Erlich-Hadad T, Greif H, Lorberboum-Galski H. Int J Biochem Cell Biol 81 48-56 (2016)
  49. Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: crystallographic analysis of a glutathione amide reductase. Van Petegem F, De Vos D, Savvides S, Vergauwen B, Van Beeumen J. J Mol Biol 374 883-889 (2007)
  50. The Role of the Rare Variants in the Genes Encoding the Alpha-Ketoglutarate Dehydrogenase in Alzheimer's Disease. Csaban D, Pentelenyi K, Toth-Bencsik R, Illes A, Grosz Z, Gezsi A, Molnar MJ. Life (Basel) 11 321 (2021)
  51. The role of amino acids T148 and R281 in human dihydrolipoamide dehydrogenase. Wang YC, Wang ST, Li C, Chen LY, Liu WH, Chen PR, Chou MC, Liu TC. J Biomed Sci 15 37-46 (2008)
  52. MRPS36 provides a structural link in the eukaryotic 2-oxoglutarate dehydrogenase complex. Hevler JF, Albanese P, Cabrera-Orefice A, Potter A, Jankevics A, Misic J, Scheltema RA, Brandt U, Arnold S, Heck AJR. Open Biol 13 220363 (2023)
  53. Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism. Peng MZ, Shao YX, Li XZ, Zhang KD, Cai YN, Lin YT, Jiang MY, Liu ZC, Su XY, Zhang W, Jiang XL, Liu L. Cell Mol Life Sci 79 375 (2022)
  54. Contrasting effects of selenite and tellurite on lipoamide dehydrogenase activity suggest a different biological behaviour of the two chalcogens. Folda A, Citta A, Scutari G, Bindoli A, Rigobello MP. Arch Biochem Biophys 517 30-36 (2012)
  55. Pyruvate dehydrogenase operates as an intramolecular nitroxyl generator during macrophage metabolic reprogramming. Palmieri EM, Holewinski R, McGinity CL, Pierri CL, Maio N, Weiss JM, Tragni V, Miranda KM, Rouault TA, Andresson T, Wink DA, McVicar DW. Nat Commun 14 5114 (2023)
  56. Structural and Biochemical Investigation of Selected Pathogenic Mutants of the Human Dihydrolipoamide Dehydrogenase. Szabo E, Nemes-Nikodem E, Vass KR, Zambo Z, Zrupko E, Torocsik B, Ozohanics O, Nagy B, Ambrus A. Int J Mol Sci 24 10826 (2023)
  57. Transcriptome profiling and in silico docking analysis of phosphine resistance in rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Selvapandian U, Nallusamy S, Singh SK, Mannu J, Shanmugam V, Ravikumar C, Subbarayalu M. J Insect Sci 23 29 (2023)
  58. Tyrosine Residues 232 and 401 Play a Critical Role in the Binding of the Cofactor FAD of Acyl-coA Oxidase. Deng S, Li P, Wang Y, Zeng J. Appl Biochem Biotechnol 185 875-883 (2018)