1yqw Citations

Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases.

J Biol Inorg Chem 10 239-49 (2005)
Related entries: 1yq9, 1yrq

Cited: 122 times
EuropePMC logo PMID: 15803334

Abstract

[NiFe] hydrogenases catalyze the reversible heterolytic cleavage of molecular hydrogen. Several oxidized, inactive states of these enzymes are known that are distinguishable by their very different activation properties. So far, the structural basis for this difference has not been understood because of lack of relevant crystallographic data. Here, we present the crystal structure of the ready Ni-B state of Desulfovibrio fructosovorans [NiFe] hydrogenase and show it to have a putative mu-hydroxo Ni-Fe bridging ligand at the active site. On the other hand, a new, improved refinement procedure of the X-ray diffraction data obtained for putative unready Ni-A/Ni-SU states resulted in a more elongated electron density for the bridging ligand, suggesting that it is a diatomic species. The slow activation of the Ni-A state, compared with the rapid activation of the Ni-B state, is therefore proposed to result from the different chemical nature of the ligands in the two oxidized species. Our results along with very recent electrochemical studies suggest that the diatomic ligand could be hydro-peroxide.

Reviews - 1yqw mentioned but not cited (1)

  1. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM, Poole LB. Mass Spectrom Rev 33 126-146 (2014)

Articles - 1yqw mentioned but not cited (4)

  1. Modulation of the electronic structure and the Ni-Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase. Zhu W, Marr AC, Wang Q, Neese F, Spencer DJ, Blake AJ, Cooke PA, Wilson C, Schröder M. Proc Natl Acad Sci U S A 102 18280-18285 (2005)
  2. Experimental approaches to kinetics of gas diffusion in hydrogenase. Leroux F, Dementin S, Burlat B, Cournac L, Volbeda A, Champ S, Martin L, Guigliarelli B, Bertrand P, Fontecilla-Camps J, Rousset M, Léger C. Proc Natl Acad Sci U S A 105 11188-11193 (2008)
  3. Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation. Wang PH, Blumberger J. Proc Natl Acad Sci U S A 109 6399-6404 (2012)
  4. Unleashing the power of meta-threading for evolution/structure-based function inference of proteins. Brylinski M. Front Genet 4 118 (2013)


Reviews citing this publication (23)

  1. Maturation of [NiFe]-hydrogenases in Escherichia coli. Forzi L, Sawers RG. Biometals 20 565-578 (2007)
  2. Nickel-dependent metalloenzymes. Boer JL, Mulrooney SB, Hausinger RP. Arch Biochem Biophys 544 142-152 (2014)
  3. Gates of enzymes. Gora A, Brezovsky J, Damborsky J. Chem Rev 113 5871-5923 (2013)
  4. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW. Structure 19 1038-1052 (2011)
  5. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B. J Mol Microbiol Biotechnol 10 181-196 (2005)
  6. Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. Pandelia ME, Ogata H, Lubitz W. Chemphyschem 11 1127-1140 (2010)
  7. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production. Canaguier S, Artero V, Fontecave M. Dalton Trans 315-325 (2008)
  8. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MW, Adams MW. Curr Opin Biotechnol 24 376-384 (2013)
  9. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Chou CJ, Jenney FE, Adams MW, Adams MW, Kelly RM. Metab Eng 10 394-404 (2008)
  10. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B. Chemphyschem 11 1107-1119 (2010)
  11. Hydrogenases of the model hyperthermophiles. Jenney FE, Adams MW, Adams MW. Ann N Y Acad Sci 1125 252-266 (2008)
  12. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases. Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I. FEBS Lett 586 545-556 (2012)
  13. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. Esmieu C, Raleiras P, Berggren G. Sustain Energy Fuels 2 724-750 (2018)
  14. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. Albracht SP, Meijer AJ, Rydström J. J Bioenerg Biomembr 43 541-564 (2011)
  15. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases. Flanagan LA, Parkin A. Biochem Soc Trans 44 315-328 (2016)
  16. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Möller F, Piontek S, Miller RG, Apfel UP. Chemistry 24 1471-1493 (2018)
  17. Studies on hydrogenase. Yagi T, Higuchi Y. Proc Jpn Acad Ser B Phys Biol Sci 89 16-33 (2013)
  18. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H. Angew Chem Int Ed Engl 58 18710-18714 (2019)
  19. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Chem Rev 122 11900-11973 (2022)
  20. A quantum chemical approach for the mechanisms of redox-active metalloenzymes. Siegbahn PEM. RSC Adv 11 3495-3508 (2021)
  21. Enzymatic activity mastered by altering metal coordination spheres. Moura I, Pauleta SR, Moura JJ. J Biol Inorg Chem 13 1185-1195 (2008)
  22. The roles of chalcogenides in O2 protection of H2ase active sites. Yang X, Darensbourg MY. Chem Sci 11 9366-9377 (2020)
  23. Added Complexity!-Mechanistic Aspects of Heterobimetallic Complexes for Application in Homogeneous Catalysis. Fickenscher Z, Hey-Hawkins E. Molecules 28 4233 (2023)

Articles citing this publication (94)

  1. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U. Science 321 572-575 (2008)
  2. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CM. Nature 479 249-252 (2011)
  3. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y. Structure 13 1635-1642 (2005)
  4. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC. Proc Natl Acad Sci U S A 109 5305-5310 (2012)
  5. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H, Lubitz W, Higuchi Y. Dalton Trans 7577-7587 (2009)
  6. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA. J Am Chem Soc 133 16881-16892 (2011)
  7. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Cracknell JA, Wait AF, Lenz O, Friedrich B, Armstrong FA. Proc Natl Acad Sci U S A 106 20681-20686 (2009)
  8. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. Saggu M, Zebger I, Ludwig M, Lenz O, Friedrich B, Hildebrandt P, Lendzian F. J Biol Chem 284 16264-16276 (2009)
  9. The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, "as-isolated" state. Marques MC, Coelho R, De Lacey AL, Pereira IA, Matias PM. J Mol Biol 396 893-907 (2010)
  10. A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W. J Biol Inorg Chem 11 41-51 (2006)
  11. Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. Valente FM, Oliveira AS, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IA. J Biol Inorg Chem 10 667-682 (2005)
  12. Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). Pardo A, De Lacey AL, Fernández VM, Fan HJ, Fan Y, Hall MB. J Biol Inorg Chem 11 286-306 (2006)
  13. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. Pilak O, Mamat B, Vogt S, Hagemeier CH, Thauer RK, Shima S, Vonrhein C, Warkentin E, Ermler U. J Mol Biol 358 798-809 (2006)
  14. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. Lambertz C, Leidel N, Havelius KG, Noth J, Chernev P, Winkler M, Happe T, Haumann M. J Biol Chem 286 40614-40623 (2011)
  15. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. Albracht SP, Roseboom W, Hatchikian EC. J Biol Inorg Chem 11 88-101 (2006)
  16. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Groysman S, Holm RH. Biochemistry 48 2310-2320 (2009)
  17. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase. Chandrayan SK, McTernan PM, Hopkins RC, Sun J, Jenney FE, Adams MW, Adams MW. J Biol Chem 287 3257-3264 (2012)
  18. Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. McGlynn SE, Mulder DW, Shepard EM, Broderick JB, Peters JW. Dalton Trans 4274-4285 (2009)
  19. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. Zhou Z, Hashimoto Y, Kobayashi M. J Biol Chem 284 14930-14938 (2009)
  20. Thiolate-bridged dinuclear iron(tris-carbonyl)-nickel complexes relevant to the active site of [NiFe] hydrogenase. Ohki Y, Yasumura K, Kuge K, Tanino S, Ando M, Li Z, Tatsumi K. Proc Natl Acad Sci U S A 105 7652-7657 (2008)
  21. Hydrogen activation by biomimetic [NiFe]-hydrogenase model containing protected cyanide cofactors. Manor BC, Rauchfuss TB. J Am Chem Soc 135 11895-11900 (2013)
  22. Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, Appel J. J Biol Chem 284 36462-36472 (2009)
  23. Theoretical spectroscopy of the Ni(II) intermediate states in the catalytic cycle and the activation of [NiFe] hydrogenases. Krämer T, Kampa M, Lubitz W, van Gastel M, Neese F. Chembiochem 14 1898-1905 (2013)
  24. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. Volbeda A, Martin L, Barbier E, Gutiérrez-Sanz O, De Lacey AL, Liebgott PP, Dementin S, Rousset M, Fontecilla-Camps JC. J Biol Inorg Chem 20 11-22 (2015)
  25. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Wulff P, Day CC, Sargent F, Armstrong FA. Proc Natl Acad Sci U S A 111 6606-6611 (2014)
  26. O2-independent formation of the inactive states of NiFe hydrogenase. Abou Hamdan A, Burlat B, Gutiérrez-Sanz O, Liebgott PP, Baffert C, De Lacey AL, Rousset M, Guigliarelli B, Léger C, Dementin S. Nat Chem Biol 9 15-17 (2013)
  27. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M. Inorg Chem 51 2338-2348 (2012)
  28. The F₄₂₀-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ, Shima S, Ermler U. J Mol Biol 426 2813-2826 (2014)
  29. A unified model for surface electrocatalysis based on observations with enzymes. Hexter SV, Esterle TF, Armstrong FA. Phys Chem Chem Phys 16 11822-11833 (2014)
  30. Electrons from hydrogen. Ogo S. Chem Commun (Camb) 3317-3325 (2009)
  31. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module. Long M, Liu J, Chen Z, Bleijlevens B, Roseboom W, Albracht SP. J Biol Inorg Chem 12 62-78 (2007)
  32. A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Fdez Galván I, Volbeda A, Fontecilla-Camps JC, Field MJ. Proteins 73 195-203 (2008)
  33. Better than platinum? Fuel cells energized by enzymes. Tye JW, Hall MB, Darensbourg MY. Proc Natl Acad Sci U S A 102 16911-16912 (2005)
  34. Regioselectivity of H cluster oxidation. Bruska MK, Stiebritz MT, Reiher M. J Am Chem Soc 133 20588-20603 (2011)
  35. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Volbeda A, Fontecilla-Camps JC. Dalton Trans 3443-3450 (2005)
  36. [NiFe] hydrogenases: how close do structural and functional mimics approach the active site? Kaur-Ghumaan S, Stein M. Dalton Trans 43 9392-9405 (2014)
  37. A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of CO3Fe(micro-StBu)3Ni{SC6H3-2,6-(mesityl)2} and reversible CO addition at the Ni site. Ohki Y, Yasumura K, Ando M, Shimokata S, Tatsumi K. Proc Natl Acad Sci U S A 107 3994-3997 (2010)
  38. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry. Ryde U. Dalton Trans 607-625 (2007)
  39. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SP. J Biol Inorg Chem 11 247-260 (2006)
  40. Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity. Pandelia ME, Ogata H, Currell LJ, Flores M, Lubitz W. J Biol Inorg Chem 14 1227-1241 (2009)
  41. QM/MM studies of Ni-Fe hydrogenases: the effect of enzyme environment on the structure and energies of the inactive and active states. Jayapal P, Sundararajan M, Hillier IH, Burton NA. Phys Chem Chem Phys 10 4249-4257 (2008)
  42. SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Millo D, Hildebrandt P, Pandelia ME, Lubitz W, Zebger I. Angew Chem Int Ed Engl 50 2632-2634 (2011)
  43. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Wombwell C, Reisner E. Dalton Trans 43 4483-4493 (2014)
  44. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Vincent KA, Cracknell JA, Parkin A, Armstrong FA. Dalton Trans 3397-3403 (2005)
  45. Synthetic Active Site Model of the [NiFeSe] Hydrogenase. Wombwell C, Reisner E. Chemistry 21 8096-8104 (2015)
  46. Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. Schröder O, Bleijlevens B, de Jongh TE, Chen Z, Li T, Fischer J, Förster J, Friedrich CG, Bagley KA, Albracht SP, Lubitz W. J Biol Inorg Chem 12 212-233 (2007)
  47. Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. Pardo A, De Lacey AL, Fernández VM, Fan Y, Hall MB. J Biol Inorg Chem 12 751-760 (2007)
  48. A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase. Wang PH, Best RB, Blumberger J. Phys Chem Chem Phys 13 7708-7719 (2011)
  49. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Kothari A, Vaughn M, Garcia-Pichel F. Front Microbiol 4 363 (2013)
  50. Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. Saggu M, Teutloff C, Ludwig M, Brecht M, Pandelia ME, Lenz O, Friedrich B, Lubitz W, Hildebrandt P, Lendzian F, Bittl R. Phys Chem Chem Phys 12 2139-2148 (2010)
  51. Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: models of the iron-iron hydrogenase enzyme active site. Tye JW, Darensbourg MY, Hall MB. J Comput Chem 27 1454-1462 (2006)
  52. H2 and O2 activation--a remarkable insight into hydrogenase. Ogo S. Chem Rec 14 397-409 (2014)
  53. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer. Reback ML, Ginovska-Pangovska B, Ho MH, Jain A, Squier TC, Raugei S, Roberts JA, Shaw WJ. Chemistry 19 1928-1941 (2013)
  54. Dynamic electrochemical experiments on hydrogenases. Armstrong FA. Photosynth Res 102 541-550 (2009)
  55. Interaction of the active site of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough with carbon monoxide and oxygen inhibitors. Gutiérrez-Sánchez C, Rüdiger O, Fernández VM, De Lacey AL, Marques M, Pereira IA. J Biol Inorg Chem 15 1285-1292 (2010)
  56. Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: an approach by quantum chemistry and single crystal ENDOR spectroscopy. Barilone JL, Ogata H, Lubitz W, van Gastel M. Phys Chem Chem Phys 17 16204-16212 (2015)
  57. The structural plasticity of the proximal [4Fe3S] cluster is responsible for the O2 tolerance of membrane-bound [NiFe] hydrogenases. Mouesca JM, Fontecilla-Camps JC, Amara P. Angew Chem Int Ed Engl 52 2002-2006 (2013)
  58. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme. Raleiras P, Kellers P, Lindblad P, Styring S, Magnuson A. J Biol Chem 288 18345-18352 (2013)
  59. Simple ligand effects switch a hydrogenase mimic between H2 and O2 activation. Kim K, Matsumoto T, Robertson A, Nakai H, Ogo S. Chem Asian J 7 1394-1400 (2012)
  60. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase. Abou-Hamdan A, Ceccaldi P, Lebrette H, Gutiérrez-Sanz O, Richaud P, Cournac L, Guigliarelli B, De Lacey AL, Léger C, Volbeda A, Burlat B, Dementin S. J Biol Chem 290 8550-8558 (2015)
  61. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Tai H, Higuchi Y, Hirota S. Dalton Trans 47 4408-4423 (2018)
  62. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Phys Chem Chem Phys 18 22025-22030 (2016)
  63. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states. Volbeda A, Martin L, Liebgott PP, De Lacey AL, Fontecilla-Camps JC. Metallomics 7 710-718 (2015)
  64. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. Fritsch J, Siebert E, Priebe J, Zebger I, Lendzian F, Teutloff C, Friedrich B, Lenz O. J Biol Chem 289 7982-7993 (2014)
  65. Time-Resolved Crystallography of the Reaction Intermediate of Nitrile Hydratase: Revealing a Role for the Cysteinesulfenic Acid Ligand as a Catalytic Nucleophile. Yamanaka Y, Kato Y, Hashimoto K, Iida K, Nagasawa K, Nakayama H, Dohmae N, Noguchi K, Noguchi T, Yohda M, Odaka M. Angew Chem Int Ed Engl 54 10763-10767 (2015)
  66. Unusual formation of a [NiSFe(2)(CO)(6)] cluster: a structural model for the inactive form of [NiFe] hydrogenase. Perra A, Wang Q, Blake AJ, Davies ES, McMaster J, Wilson C, Schröder M. Dalton Trans 925-931 (2009)
  67. Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas. Cordas CM, Moura I, Moura JJ. Bioelectrochemistry 74 83-89 (2008)
  68. How are the ready and unready states of nickel-iron hydrogenase activated by H2? A density functional theory study. Jayapal P, Sundararajan M, Hillier IH, Burton NA. Phys Chem Chem Phys 8 4086-4094 (2006)
  69. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light. Osuka H, Shomura Y, Komori H, Shibata N, Nagao S, Higuchi Y, Hirota S. Biochem Biophys Res Commun 430 284-288 (2013)
  70. Protein-protein complex formation affects the Ni-Fe and Fe-S centers in the H2-sensing regulatory hydrogenase from Ralstonia eutropha H16. Löscher S, Gebler A, Stein M, Sanganas O, Buhrke T, Zebger I, Dau H, Friedrich B, Lenz O, Haumann M. Chemphyschem 11 1297-1306 (2010)
  71. The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures. Periyasamy G, Sundararajan M, Hillier IH, Burton NA, McDouall JJ. Phys Chem Chem Phys 9 2498-2506 (2007)
  72. The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha - a minimal hydrogenase? Caserta G, Lorent C, Ciaccafava A, Keck M, Breglia R, Greco C, Limberg C, Hildebrandt P, Cramer SP, Zebger I, Lenz O. Chem Sci 11 5453-5465 (2020)
  73. Hydrogen bonding effect between active site and protein environment on catalysis performance in H2-producing [NiFe] hydrogenases. Qiu S, Azofra LM, MacFarlane DR, Sun C. Phys Chem Chem Phys 20 6735-6743 (2018)
  74. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase. Topin J, Rousset M, Antonczak S, Golebiowski J. Proteins 80 677-682 (2012)
  75. Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase. Saggu M, Ludwig M, Friedrich B, Hildebrandt P, Bittl R, Lendzian F, Lenz O, Zebger I. Chemphyschem 11 1215-1224 (2010)
  76. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity. Smith DM, Raugei S, Squier TC. Phys Chem Chem Phys 16 24026-24033 (2014)
  77. Reactivation from the Ni-B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster. Radu V, Frielingsdorf S, Lenz O, Jeuken LJ. Chem Commun (Camb) 52 2632-2635 (2016)
  78. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study. Tabrizi SG, Pelmenschikov V, Noodleman L, Kaupp M. J Chem Theory Comput 12 174-187 (2016)
  79. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site. Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M. Phys Chem Chem Phys 20 1693-1706 (2018)
  80. Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Qiu S, Azofra LM, MacFarlane DR, Sun C. Phys Chem Chem Phys 18 15369-15374 (2016)
  81. Dithiolato- and halogenido-bridged nickel-iron complexes related to the active site of [NiFe]-H2ases: preparation, structures, and electrocatalytic H2 production. Song LC, Han XF, Chen W, Li JP, Wang XY. Dalton Trans 46 10003-10013 (2017)
  82. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences. Das R, Neese F, van Gastel M. Phys Chem Chem Phys 18 24681-24692 (2016)
  83. Synthetic and structural studies on new diiron azadithiolate (ADT)-type model compounds for active site of [FeFe]hydrogenases. Song LC, Xie ZJ, Liu XF, Ming JB, Ge JH, Zhang XG, Yan TY, Gao P. Dalton Trans 40 837-846 (2011)
  84. Theoretical insights into [NiFe]-hydrogenases oxidation resulting in a slowly reactivating inactive state. Breglia R, Ruiz-Rodriguez MA, Vitriolo A, Gonzàlez-Laredo RF, De Gioia L, Greco C, Bruschi M. J Biol Inorg Chem 22 137-151 (2017)
  85. Site preferences in hetero-metallic [Fe9-xNix] clusters: a combined crystallographic, spectroscopic and theoretical analysis. Georgopoulou AN, Al-Ameed K, Boudalis AK, Anagnostopoulos DF, Psycharis V, McGrady JE, Sanakis Y, Raptopoulou CP. Dalton Trans 46 12835-12844 (2017)
  86. The oxygen reduction reaction on [NiFe] hydrogenases. Qiu S, Olsen S, MacFarlane DR, Sun C. Phys Chem Chem Phys 20 23528-23534 (2018)
  87. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study. Greco C. Dalton Trans 42 13845-13854 (2013)
  88. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding. Vedha SA, Solomon RV, Venuvanalingam P. Phys Chem Chem Phys 16 10698-10707 (2014)
  89. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Chem Sci 14 8531-8551 (2023)
  90. Heterodinuclear nickel(ii)-iron(ii) azadithiolates as structural and functional models for the active site of [NiFe]-hydrogenases. Song LC, Liu BB, Liu WB, Tan ZL. RSC Adv 10 32069-32077 (2020)
  91. Hydrogen-fueled CO2 reduction using oxygen-tolerant oxidoreductases. Cha J, Bak H, Kwon I. Front Bioeng Biotechnol 10 1078164 (2022)
  92. Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases. Barbosa TM, Baltazar CSA, Cruz DR, Lousa D, Soares CM. Sci Rep 10 10540 (2020)
  93. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Aust J Chem 70 505-515 (2017)
  94. The Fully Oxidized State of the Glutamate Coordinated O2-Tolerant [NiFe]-Hydrogenase Shows a Ni(III)/Fe(III) Open-Shell Singlet Ground State. Kumar R, Stein M. J Am Chem Soc 145 10954-10959 (2023)


Related citations provided by authors (2)

  1. High-Resolution Crystallographic Analysis of Desulfovibrio Fructosovorans [NiFe] Hydrogenase. Volbeda A, Montet Y, Vernede X, Hatchikian EC, Fontecilla-Camps JC Int J Hydrogen Energy 27 1449-1461 (2002)
  2. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics.. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC Nat Struct Biol 4 523-6 (1997)