1yki Citations

Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme.

J Biol Chem 280 13256-64 (2005)
Related entries: 1ylr, 1ylu

Cited: 93 times
EuropePMC logo PMID: 15684426

Abstract

The antibiotics nitrofurazone and nitrofurantoin are used in the treatment of genitourinary infections and as topical antibacterial agents. Their action is dependent upon activation by bacterial nitroreductase flavoproteins, including the Escherichia coli nitroreductase (NTR). Here we show that the products of reduction of these antibiotics by NTR are the hydroxylamine derivatives. We show that the reduction of nitrosoaromatics is enzyme-catalyzed, with a specificity constant approximately 10,000-fold greater than that of the starting nitro compounds. This suggests that the reduction of nitro groups proceeds through two successive, enzyme-mediated reactions and explains why the nitroso intermediates are not observed. The global reaction rate for nitrofurazone determined in this study is over 10-fold higher than that previously reported, suggesting that the enzyme is much more active toward nitroaromatics than previously estimated. Surprisingly, in the crystal structure of the oxidized NTR-nitrofurazone complex, nitrofurazone is oriented with its amide group, rather than the nitro group to be reduced, positioned over the reactive N5 of the FMN cofactor. Free acetate, which acts as a competitive inhibitor with respect to NADH, binds in a similar orientation. We infer that the orientation of bound nitrofurazone depends upon the redox state of the enzyme. We propose that the charge distribution on the FMN rings, which alters upon reduction, is an important determinant of substrate binding and reactivity in flavoproteins with broad substrate specificity.

Reviews - 1yki mentioned but not cited (1)

  1. The distribution and mechanism of iodotyrosine deiodinase defied expectations. Sun Z, Su Q, Rokita SE. Arch Biochem Biophys 632 77-87 (2017)

Articles - 1yki mentioned but not cited (10)

  1. Structure of RdxA--an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. Martínez-Júlvez M, Rojas AL, Olekhnovich I, Espinosa Angarica V, Hoffman PS, Sancho J. FEBS J 279 4306-4317 (2012)
  2. Empirical power laws for the radii of gyration of protein oligomers. Tanner JJ. Acta Crystallogr D Struct Biol 72 1119-1129 (2016)
  3. Activation of nitrofurazone by azoreductases: multiple activities in one enzyme. Ryan A, Kaplan E, Laurieri N, Lowe E, Sim E. Sci Rep 1 63 (2011)
  4. Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme. Carvalho AS, Salomão K, Castro SL, Conde TR, Zamith HP, Caffarena ER, Hall BS, Wilkinson SR, Boechat N. Mem Inst Oswaldo Cruz 109 315-323 (2014)
  5. Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy. Hameed P S, Bharatham N, Katagihallimath N, Sharma S, Nandishaiah R, Shanbhag AP, Thomas T, Narjari R, Sarma M, Bhowmik P, Amar P, Ravishankar R, Jayaraman R, Muthan K, Subbiah R, Ramachandran V, Balasubramanian V, Datta S. Sci Rep 8 7263 (2018)
  6. Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole. Wang B, Powell SM, Hessami N, Najar FZ, Thomas LM, Karr EA, West AH, Richter-Addo GB. Nitric Oxide 60 32-39 (2016)
  7. Sequence Conservation Does Not Always Signify a Functional Imperative as Observed in the Nitroreductase Superfamily. Musila JM, Rokita SE. Biochemistry 61 703-711 (2022)
  8. 5-Nitrofuran-Tagged Oxazolyl Pyrazolopiperidines: Synthesis and Activity against ESKAPE Pathogens. Rogacheva E, Kraeva L, Lukin A, Vinogradova L, Komarova K, Chudinov M, Gureev M, Chupakhin E. Molecules 28 6491 (2023)
  9. Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke-Blackburn-Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria. Sapegin A, Rogacheva E, Kraeva L, Gureev M, Dogonadze M, Vinogradova T, Yablonsky P, Balalaie S, Baykov SV, Krasavin M. Biomedicines 10 2203 (2022)
  10. Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. Paruch K, Biernasiuk A, Khylyuk D, Paduch R, Wujec M, Popiołek Ł. Int J Mol Sci 23 2823 (2022)


Reviews citing this publication (6)

  1. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. FEMS Microbiol Rev 32 474-500 (2008)
  2. Bacterial pathways for degradation of nitroaromatics. Symons ZC, Bruce NC. Nat Prod Rep 23 845-850 (2006)
  3. Azoreductases in drug metabolism. Ryan A. Br J Pharmacol 174 2161-2173 (2017)
  4. Nitrofurans: Revival of an "old" drug class in the fight against antibiotic resistance. Le VVH, Rakonjac J. PLoS Pathog 17 e1009663 (2021)
  5. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Int J Mol Sci 22 8534 (2021)
  6. Nitrofurantoin: properties and potential in treatment of urinary tract infection: a narrative review. Mahdizade Ari M, Dashtbin S, Ghasemi F, Shahroodian S, Kiani P, Bafandeh E, Darbandi T, Ghanavati R, Darbandi A. Front Cell Infect Microbiol 13 1148603 (2023)

Articles citing this publication (76)

  1. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Sokolova AY, Wyllie S, Patterson S, Oza SL, Read KD, Fairlamb AH. Antimicrob Agents Chemother 54 2893-2900 (2010)
  2. Experimental investigation of anion-π interactions--applications and biochemical relevance. Giese M, Albrecht M, Rissanen K. Chem Commun (Camb) 52 1778-1795 (2016)
  3. "On demand" redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor. Shukla P, Khodade VS, SharathChandra M, Chauhan P, Mishra S, Siddaramappa S, Pradeep BE, Singh A, Chakrapani H. Chem Sci 8 4967-4972 (2017)
  4. Flavodoxin:quinone reductase (FqrB): a redox partner of pyruvate:ferredoxin oxidoreductase that reversibly couples pyruvate oxidation to NADPH production in Helicobacter pylori and Campylobacter jejuni. St Maurice M, Cremades N, Croxen MA, Sisson G, Sancho J, Hoffman PS. J Bacteriol 189 4764-4773 (2007)
  5. Kinetic and structural characterisation of Escherichia coli nitroreductase mutants showing improved efficacy for the prodrug substrate CB1954. Race PR, Lovering AL, White SA, Grove JI, Searle PF, Wrighton CW, Hyde EI. J Mol Biol 368 481-492 (2007)
  6. Biological and structural characterization of the Mycobacterium smegmatis nitroreductase NfnB, and its role in benzothiazinone resistance. Manina G, Bellinzoni M, Pasca MR, Neres J, Milano A, Ribeiro AL, Buroni S, Skovierová H, Dianišková P, Mikušová K, Marák J, Makarov V, Giganti D, Haouz A, Lucarelli AP, Degiacomi G, Piazza A, Chiarelli LR, De Rossi E, Salina E, Cole ST, Alzari PM, Riccardi G. Mol Microbiol 77 1172-1185 (2010)
  7. Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PC. J Bacteriol 189 3502-3514 (2007)
  8. E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954. Vass SO, Jarrom D, Wilson WR, Hyde EI, Searle PF. Br J Cancer 100 1903-1911 (2009)
  9. Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori. Olekhnovich IN, Goodwin A, Hoffman PS. FEBS J 276 3354-3364 (2009)
  10. Effectiveness of a honey dressing for healing pressure ulcers. Yapucu Güneş U, Eşer I. J Wound Ostomy Continence Nurs 34 184-190 (2007)
  11. NDM-1-producing Klebsiella pneumoniae resistant to colistin in a French community patient without history of foreign travel. Arpin C, Noury P, Boraud D, Coulange L, Manetti A, André C, M'Zali F, Quentin C. Antimicrob Agents Chemother 56 3432-3434 (2012)
  12. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. Griese JJ, P Jakob R, Schwarzinger S, Dobbek H. J Mol Biol 361 140-152 (2006)
  13. A rapid response "Turn-On" fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging. Xu J, Sun S, Li Q, Yue Y, Li Y, Shao S. Analyst 140 574-581 (2015)
  14. Anion-π interactions in flavoproteins. Estarellas C, Frontera A, Quiñonero D, Deyà PM. Chem Asian J 6 2316-2318 (2011)
  15. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, Fong B, Sanchez Martinez A, Siegel JB, Li H. Nat Chem Biol 16 87-94 (2020)
  16. Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopy† Lee MK, Williams J, Twieg RJ, Rao J, Moerner WE. Chem Sci 42 220-225 (2013)
  17. 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase. Li Z, Gao X, Shi W, Li X, Ma H. Chem Commun (Camb) 49 5859-5861 (2013)
  18. Discovery and Characterization of a Nitroreductase Capable of Conferring Bacterial Resistance to Chloramphenicol. Crofts TS, Sontha P, King AO, Wang B, Biddy BA, Zanolli N, Gaumnitz J, Dantas G. Cell Chem Biol 26 559-570.e6 (2019)
  19. Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs. Hall BS, Meredith EL, Wilkinson SR. Antimicrob Agents Chemother 56 5821-5830 (2012)
  20. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184. Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS. FEBS J 272 4660-4671 (2005)
  21. Understanding the broad substrate repertoire of nitroreductase based on its kinetic mechanism. Pitsawong W, Hoben JP, Miller AF. J Biol Chem 289 15203-15214 (2014)
  22. An unusually cold active nitroreductase for prodrug activations. Çelik A, Yetiş G. Bioorg Med Chem 20 3540-3550 (2012)
  23. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. Mercier C, Chalansonnet V, Orenga S, Gilbert C. J Appl Microbiol 115 1012-1022 (2013)
  24. Single Amino Acid Switch between a Flavin-Dependent Dehalogenase and Nitroreductase. Mukherjee A, Rokita SE. J Am Chem Soc 137 15342-15345 (2015)
  25. Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Yin Y, Xiao Y, Liu HZ, Hao F, Rayner S, Tang H, Zhou NY. Appl Microbiol Biotechnol 87 2077-2085 (2010)
  26. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. Takeda K, Iizuka M, Watanabe T, Nakagawa J, Kawasaki S, Niimura Y. FEBS J 274 1318-1327 (2007)
  27. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370. Zaitseva J, Granik V, Belik A, Koksharova O, Khmel I. Res Microbiol 160 353-357 (2009)
  28. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benzonidazole in Trypanosoma cruzi. Mejía-Jaramillo AM, Fernández GJ, Palacio L, Triana-Chávez O. Parasit Vectors 4 169 (2011)
  29. Structure-based development of bacterial nitroreductase against nitrobenzodiazepine-induced hypnosis. LinWu SW, Wu CA, Peng FC, Wang AH. Biochem Pharmacol 83 1690-1699 (2012)
  30. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Structure 25 978-987.e4 (2017)
  31. A New Tetraphenylethylene-Derived Fluorescent Probe for Nitroreductase Detection and Hypoxic-Tumor-Cell Imaging. You X, Li L, Li X, Ma H, Zhang G, Zhang D. Chem Asian J 11 2918-2923 (2016)
  32. Characterization of Escherichia coli nitroreductase NfsB in the metabolism of nitrobenzodiazepines. Linwu SW, Syu CJ, Chen YL, Wang AH, Peng FC. Biochem Pharmacol 78 96-103 (2009)
  33. Direct positive selection for improved nitroreductase variants using SOS triggering of bacteriophage lambda lytic cycle. Guise CP, Grove JI, Hyde EI, Searle PF. Gene Ther 14 690-698 (2007)
  34. Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. Humayun MZ, Zhang Z, Butcher AM, Moshayedi A, Saier MH. PLoS One 12 e0180156 (2017)
  35. Informing Efforts to Develop Nitroreductase for Amine Production. Miller AF, Park JT, Ferguson KL, Pitsawong W, Bommarius AS. Molecules 23 E211 (2018)
  36. A novel off-on fluorescent probe for sensitive imaging of mitochondria-specific nitroreductase activity in living tumor cells. Huang B, Chen W, Kuang YQ, Liu W, Liu XJ, Tang LJ, Jiang JH. Org Biomol Chem 15 4383-4389 (2017)
  37. Nitrocompound activation by cell-free extracts of nitroreductase-proficient Salmonella typhimurium strains. Salamanca-Pinzón SG, Camacho-Carranza R, Hernández-Ojeda SL, Espinosa-Aguirre JJ. Mutagenesis 21 369-374 (2006)
  38. Altering the regioselectivity of a nitroreductase in the synthesis of arylhydroxylamines by structure-based engineering. Bai J, Zhou Y, Chen Q, Yang Q, Yang J. Chembiochem 16 1219-1225 (2015)
  39. Escherichia coli YafP protein modulates DNA damaging property of the nitroaromatic compounds. Gutierrez A, Elez M, Clermont O, Denamur E, Matic I. Nucleic Acids Res 39 4192-4201 (2011)
  40. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. Chalansonnet V, Mercier C, Orenga S, Gilbert C. BMC Microbiol 17 126 (2017)
  41. The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase. Pérez-Reinado E, Roldán MD, Castillo F, Moreno-Vivián C. Environ Microbiol 10 3174-3183 (2008)
  42. The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN. Day MA, Jarrom D, Christofferson AJ, Graziano AE, Anderson JLR, Searle PF, Hyde EI, White SA. Biochem J 478 2601-2617 (2021)
  43. Molecular modeling study on the disassembly of dendrimers designed as potential antichagasic and antileishmanial prodrugs. Giarolla J, Pasqualoto KF, Rando DG, Zaim MH, Ferreira EI. J Mol Model 18 2257-2269 (2012)
  44. Nitroreductase activity of ferredoxin reductase BphA4 from Dyella ginsengisoli LA-4 by catalytic and structural properties analysis. Qu Y, Zhou H, Li A, Ma F, Zhou J. Appl Microbiol Biotechnol 89 655-663 (2011)
  45. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Bioorg Med Chem 28 115710 (2020)
  46. Asymmetric ligand binding in homodimeric Enterobacter cloacae nitroreductase yields the Michaelis complex for nitroaromatic substrates. Christofferson AJ. J Mol Model 26 28 (2020)
  47. Enzymatic reduction of 9-methoxytariacuripyrone by Saccharomyces cerevisiae and its antimycobacterial activity. Alvarez-Fitz P, Alvarez L, Marquina S, Luna-Herrera J, Navarro-García VM. Molecules 17 8464-8470 (2012)
  48. Exploring anti-malarial potential of FDA approved drugs: an in silico approach. Ramakrishnan G, Chandra N, Srinivasan N. Malar J 16 290 (2017)
  49. Structure and reaction mechanism of a novel enone reductase. Hou F, Miyakawa T, Kitamura N, Takeuchi M, Park SB, Kishino S, Ogawa J, Tanokura M. FEBS J 282 1526-1537 (2015)
  50. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Shemer B, Yagur-Kroll S, Hazan C, Belkin S. Appl Environ Microbiol 84 e01729-17 (2018)
  51. Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Wan Y, Mills E, Leung RCY, Vieira A, Zhi X, Croucher NJ, Woodford N, Jauneikaite E, Ellington MJ, Sriskandan S. Microb Genom 7 (2021)
  52. Biochemical characteristics of a nitroreductase with diverse substrate specificity from Streptomyces mirabilis DUT001. Yang J, Bai J, Qu M, Xie B, Yang Q. Biotechnol Appl Biochem 66 33-42 (2019)
  53. Mechanism of Two-/Four-Electron Reduction of Nitroaromatics by Oxygen-Insensitive Nitroreductases: The Role of a Non-Enzymatic Reduction Step. Valiauga B, Misevičienė L, Rich MH, Ackerley DF, Šarlauskas J, Čėnas N. Molecules 23 E1672 (2018)
  54. Naphtho[1',2':4,5]imidazo[1,2-a]pyridine-5,6-diones: Synthesis, enzymatic reduction and cytotoxic activity. Šarlauskas J, Pečiukaitytė-Alksnė M, Misevičienė L, Marozienė A, Polmickaitė E, Staniulytė Z, Čėnas N, Anusevičius Ž. Bioorg Med Chem Lett 26 512-517 (2016)
  55. Nitro Sulfonyl Fluorides are a new pharmacophore for the development of antibiotics. Sadlowski C, Park B, Araújo C, Das S, Kerr DL, He M, Han H, Riley L, Murthy N. Mol Syst Des Eng 3 599-603 (2018)
  56. Nitroreductase-Mediated Release of Inhibitors of Lysine-Specific Demethylase 1 (LSD1) from Prodrugs in Transfected Acute Myeloid Leukaemia Cells. Herrlinger EM, Hau M, Redhaber DM, Greve G, Willmann D, Steimle S, Müller M, Lübbert M, Miething CC, Schüle R, Jung M. Chembiochem 21 2329-2347 (2020)
  57. Residue Phe42 is critical for the catalytic activity of Escherichia coli major nitroreductase NfsA. Yang J, Zhan J, Bai J, Liu P, Xue Y, Yang Q. Biotechnol Lett 35 1693-1700 (2013)
  58. A Novel NIR Fluorescent Probe for Highly Selective Detection of Nitroreductase and Hypoxic-Tumor-Cell Imaging. Liu F, Zhang H, Li K, Xie Y, Li Z. Molecules 26 4425 (2021)
  59. Crystal structure of the fungal nitroreductase Frm2 from Saccharomyces cerevisiae. Song HN, Jeong DG, Bang SY, Paek SH, Park BC, Park SG, Woo EJ. Protein Sci 24 1158-1163 (2015)
  60. Novel 5-Nitrofuran-Activating Reductase in Escherichia coli. Le VVH, Davies IG, Moon CD, Wheeler D, Biggs PJ, Rakonjac J. Antimicrob Agents Chemother 63 e00868-19 (2019)
  61. Novel Biodegradable Polymer with Redox-Triggered Backbone Cleavage Through Sequential 1,6-Elimination and 1,5-Cyclization Reactions. Whang CH, Kim KS, Bae J, Chen J, Jun HW, Jo S. Macromol Rapid Commun 38 (2017)
  62. Novel nitrofurazone derivatives endowed with antimicrobial activity. Brondani DJ, Caetano N, Moreira DR, Soares RR, Lima VT, de Araújo JM, de Abreu FC, de Oliveira BG, Hernandes MZ, Leite AC. Arch Pharm (Weinheim) 341 655-660 (2008)
  63. Assay development and inhibition of the Mt-DprE2 essential reductase from Mycobacterium tuberculosis. Batt SM, Toth S, Rodriguez B, Abrahams KA, Veerapen N, Chiodarelli G, Cox LR, Moynihan PJ, Lelievre J, Fütterer K, Besra GS. Microbiology (Reading) 169 (2023)
  64. Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes from Human Pathogens. Mullowney MW, Maltseva NI, Endres M, Kim Y, Joachimiak A, Crofts TS. Microbiol Spectr 10 e0013922 (2022)
  65. Integrated Genotoxicity Testing of three anti-infective drugs using the TGx-DDI transcriptomic biomarker and high-throughput CometChip® assay in TK6 cells. Buick JK, Rowan-Carroll A, Gagné R, Williams A, Chen R, Li HH, Fornace AJ, Chao C, Engelward BP, Frötschl R, Ellinger-Ziegelbauer H, Pettit SD, Aubrecht J, Yauk CL. Front Toxicol 4 991590 (2022)
  66. N-pentyl-nitrofurantoin induces apoptosis in HL-60 leukemia cell line by upregulating BAX and downregulating BCL-xL gene expression. Andrade JK, Souza MI, Gomes Filho MA, Silva DM, Barros AL, Rodrigues MD, Silva PB, Nascimento SC, Aguiar JS, Brondani DJ, Militão GC, Silva TG. Pharmacol Rep 68 1046-1053 (2016)
  67. Nitrofurantoin, phenazopyridine, and the superoxide-response regulon soxRS of Escherichia coli. Amábile-Cuevas CF, Arredondo-García JL. J Infect Chemother 19 1135-1140 (2013)
  68. Reductive Activity and Mechanism of Hypoxia- Targeted AGT Inhibitors: An Experimental and Theoretical Investigation. Xiao W, Sun G, Fan T, Liu J, Zhang N, Zhao L, Zhong R. Int J Mol Sci 20 E6308 (2019)
  69. The 3D-structure, kinetics and dynamics of the E. coli nitroreductase NfsA with NADP+ provide glimpses of its catalytic mechanism. White SA, Christofferson AJ, Grainger AI, Day MA, Jarrom D, Graziano AE, Searle PF, Hyde EI. FEBS Lett 596 2425-2440 (2022)
  70. Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae. Stein DC, Carrizosa E, Dunham S. BMC Microbiol 9 239 (2009)
  71. Biochemical and structural characterization of Haemophilus influenzae nitroreductase in metabolizing nitroimidazoles. Liu D, Wanniarachchi TN, Jiang G, Seabra G, Cao S, Bruner SD, Ding Y. RSC Chem Biol 3 436-446 (2022)
  72. Degradation of High Energy Materials Using Biological Reduction: A Rational Way to Reach Bioremediation. Aguero S, Terreux R. Int J Mol Sci 20 E5556 (2019)
  73. Hemicyanine-Based Near-Infrared Fluorescence Off-On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity. Lee SH, Park CS, Lee KK, Han TH, Ban HS, Lee CS. Int J Mol Sci 24 6074 (2023)
  74. Hypoxia-Directed and Self-Immolative Theranostic Agent: Imaging and Treatment of Cancer and Bacterial Infections. Karan S, Cho MY, Lee H, Kim HM, Park HS, Han EH, Sessler JL, Hong KS. J Med Chem 66 14175-14187 (2023)
  75. Structure and Dynamics of Three Escherichia coli NfsB Nitro-Reductase Mutants Selected for Enhanced Activity with the Cancer Prodrug CB1954. Day MA, Christofferson AJ, Anderson JLR, Vass SO, Evans A, Searle PF, White SA, Hyde EI. Int J Mol Sci 24 5987 (2023)
  76. The Crystal Structure of Engineered Nitroreductase NTR 2.0 and Impact of F70A and F108Y Substitutions on Substrate Specificity. Sharrock AV, Mumm JS, Bagdžiūnas G, Čėnas N, Arcus VL, Ackerley DF. Int J Mol Sci 24 6633 (2023)


Related citations provided by authors (1)