1xf1 Citations

Structure of the streptococcal cell wall C5a peptidase.

Proc Natl Acad Sci U S A 102 18391-6 (2005)
Cited: 43 times
EuropePMC logo PMID: 16344483

Abstract

The structure of a cell surface enzyme from a gram-positive pathogen has been determined to 2-A resolution. Gram-positive pathogens have a thick cell wall to which proteins and carbohydrate are covalently attached. Streptococcal C5a peptidase (SCP), is a highly specific protease and adhesin/invasin. Structural analysis of a 949-residue fragment of the [D130A,S512A] mutant of SCP from group B Streptococcus (S. agalactiae, SCPB) revealed SCPB is composed of five distinct domains. The N-terminal subtilisin-like protease domain has a 134-residue protease-associated domain inserted into a loop between two beta-strands. This domain also contains one of two Arg-Gly-Asp (RGD) sequences found in SCPB. At the C terminus are three fibronectin type III (Fn) domains. The second RGD sequence is located between Fn1 and Fn2. Our analysis suggests that SCP binding to integrins by the RGD motifs may stabilize conformational changes required for substrate binding.

Articles - 1xf1 mentioned but not cited (4)

  1. Structure of the streptococcal cell wall C5a peptidase. Brown CK, Gu ZY, Matsuka YV, Purushothaman SS, Winter LA, Cleary PP, Olmsted SB, Ohlendorf DH, Earhart CA. Proc Natl Acad Sci U S A 102 18391-18396 (2005)
  2. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases. Laskar A, Rodger EJ, Chatterjee A, Mandal C. Bioinformation 7 239-245 (2011)
  3. Structure, dynamics and immunogenicity of a catalytically inactive CXC chemokine-degrading protease SpyCEP from Streptococcus pyogenes. McKenna S, Malito E, Rouse SL, Abate F, Bensi G, Chiarot E, Micoli F, Mancini F, Gomes Moriel D, Grandi G, Mossakowska D, Pearson M, Xu Y, Pease J, Sriskandan S, Margarit I, Bottomley MJ, Matthews S. Comput Struct Biotechnol J 18 650-660 (2020)
  4. Modeled Structure of the Cell Envelope Proteinase of Lactococcus lactis. Hansen EB, Marcatili P. Front Bioeng Biotechnol 8 613986 (2020)


Reviews citing this publication (10)

  1. Streptococcus adherence and colonization. Nobbs AH, Lamont RJ, Jenkinson HF. Microbiol Mol Biol Rev 73 407-50, Table of Contents (2009)
  2. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. Henderson B, Nair S, Pallas J, Williams MA. FEMS Microbiol Rev 35 147-200 (2011)
  3. Recent advances in understanding the molecular basis of group B Streptococcus virulence. Maisey HC, Doran KS, Nizet V. Expert Rev Mol Med 10 e27 (2008)
  4. Molecular pathogenesis of necrotizing fasciitis. Olsen RJ, Musser JM. Annu Rev Pathol 5 1-31 (2010)
  5. Generic determinants of Streptococcus colonization and infection. Nobbs AH, Jenkinson HF, Everett DB. Infect Genet Evol 33 361-370 (2015)
  6. Non-proteolytic functions of microbial proteases increase pathological complexity. Jarocki VM, Tacchi JL, Djordjevic SP. Proteomics 15 1075-1088 (2015)
  7. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Front Immunol 9 602 (2018)
  8. Fibronectin and Its Role in Human Infective Diseases. Speziale P, Arciola CR, Pietrocola G. Cells 8 (2019)
  9. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Mahmoud YA, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Polymers (Basel) 13 4136 (2021)
  10. The Pathogenic Factors from Oral Streptococci for Systemic Diseases. Yumoto H, Hirota K, Hirao K, Ninomiya M, Murakami K, Fujii H, Miyake Y. Int J Mol Sci 20 (2019)

Articles citing this publication (29)

  1. Molecular mechanisms underlying group A streptococcal pathogenesis. Olsen RJ, Shelburne SA, Musser JM. Cell Microbiol 11 1-12 (2009)
  2. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. Bryan JD, Shelver DW. J Bacteriol 191 1847-1854 (2009)
  3. Streptococcus pyogenes SpyCEP: a chemokine-inactivating protease with unique structural and biochemical features. Zingaretti C, Falugi F, Nardi-Dei V, Pietrocola G, Mariani M, Liberatori S, Gallotta M, Tontini M, Tani C, Speziale P, Grandi G, Margarit I. FASEB J 24 2839-2848 (2010)
  4. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: A 1.9 A crystal structure of the active form of ScpA. Kagawa TF, O'Connell MR, Mouat P, Paoli M, O'Toole PW, Cooney JC. J Mol Biol 386 754-772 (2009)
  5. Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloë festucae. Bryant MK, Schardl CL, Hesse U, Scott B. BMC Evol Biol 9 168 (2009)
  6. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. Lynskey NN, Reglinski M, Calay D, Siggins MK, Mason JC, Botto M, Sriskandan S. PLoS Pathog 13 e1006493 (2017)
  7. Functional insight into the C-terminal extension of halolysin SptA from haloarchaeon Natrinema sp. J7. Xu Z, Du X, Li T, Gan F, Tang B, Tang XF. PLoS One 6 e23562 (2011)
  8. How vacuolar sorting receptor proteins interact with their cargo proteins: crystal structures of apo and cargo-bound forms of the protease-associated domain from an Arabidopsis vacuolar sorting receptor. Luo F, Fong YH, Zeng Y, Shen J, Jiang L, Wong KB. Plant Cell 26 3693-3708 (2014)
  9. Human serum induces streptococcal c5a peptidase expression. Gleich-Theurer U, Aymanns S, Haas G, Mauerer S, Vogt J, Spellerberg B. Infect Immun 77 3817-3825 (2009)
  10. Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses. Liang X, Wang B, Dong Q, Li L, Rollins JA, Zhang R, Sun G. PLoS One 13 e0196303 (2018)
  11. The PA-TM-RING protein RING finger protein 13 is an endosomal integral membrane E3 ubiquitin ligase whose RING finger domain is released to the cytoplasm by proteolysis. Bocock JP, Carmicle S, Chhotani S, Ruffolo MR, Chu H, Erickson AH. FEBS J 276 1860-1877 (2009)
  12. The fibronectin-binding motif within FlpA facilitates Campylobacter jejuni adherence to host cell and activation of host cell signaling. Larson CL, Samuelson DR, Eucker TP, O'Loughlin JL, Konkel ME. Emerg Microbes Infect 2 e65 (2013)
  13. Chemokine degradation by the Group A streptococcal serine proteinase ScpC can be reconstituted in vitro and requires two separate domains. Fritzer A, Noiges B, Schweiger D, Rek A, Kungl AJ, von Gabain A, Nagy E, Meinke AL. Biochem J 422 533-542 (2009)
  14. Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. Zhou Z, Peng X, Xiao Y, Wang X, Guo Z, Zhu L, Liu M, Jin H, Bi D, Li Z, Sun M. J Bacteriol 193 1284-1285 (2011)
  15. Progress toward a group B streptococcal vaccine. Song JY, Lim JH, Lim S, Yong Z, Seo HS. Hum Vaccin Immunother 14 2669-2681 (2018)
  16. Collagenolytic subtilisin-like protease from the deep-sea bacterium Alkalimonas collagenimarina AC40T. Kurata A, Uchimura K, Kobayashi T, Horikoshi K. Appl Microbiol Biotechnol 86 589-598 (2010)
  17. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Hunter SK. Am J Obstet Gynecol 205 249.e1-8 (2011)
  18. Characterization of a New S8 serine Protease from Marine Sedimentary Photobacterium sp. A5-7 and the Function of Its Protease-Associated Domain. Li HJ, Tang BL, Shao X, Liu BX, Zheng XY, Han XX, Li PY, Zhang XY, Song XY, Chen XL. Front Microbiol 7 2016 (2016)
  19. Rapid Maize Leaf and Immature Ear Responses to UV-B Radiation. Casati P, Morrow DJ, Fernandes JF, Walbot V. Front Plant Sci 2 33 (2011)
  20. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of SpyCEP, a candidate antigen for a vaccine against Streptococcus pyogenes. Abate F, Malito E, Falugi F, Margarit Y Ros I, Bottomley MJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1103-1106 (2013)
  21. Crystal structure of truncated FlgD from the human pathogen Helicobacter pylori. Pulić I, Cendron L, Salamina M, Polverino de Laureto P, Matković-Čalogović D, Zanotti G. J Struct Biol 194 147-155 (2016)
  22. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling. Børsting MW, Qvist KB, Brockmann E, Vindeløv J, Pedersen TL, Vogensen FK, Ardö Y. J Dairy Sci 98 68-77 (2015)
  23. Novel Chimeric Multiepitope Vaccine for Streptococcosis Disease in Nile Tilapia (Oreochromis niloticus Linn.). Pumchan A, Krobthong S, Roytrakul S, Sawatdichaikul O, Kondo H, Hirono I, Areechon N, Unajak S. Sci Rep 10 603 (2020)
  24. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands. Giussani S, Pietrocola G, Donnarumma D, Norais N, Speziale P, Fabbrini M, Margarit I. FASEB J 33 4448-4457 (2019)
  25. Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Huang Q, Zhang K, Li Y, Gan F, Tang XF, Tang B. Appl Environ Microbiol 88 e0150322 (2022)
  26. Comparative Structure Analysis of the Multi-Domain, Cell Envelope Proteases of Lactic Acid Bacteria. Christensen LF, Høie MH, Bang-Berthelsen CH, Marcatili P, Hansen EB. Microorganisms 11 2256 (2023)
  27. Environmental influences on Streptococcus sanguinis membrane vesicle biogenesis. Helliwell E, Choi D, Merritt J, Kreth J. ISME J 17 1430-1444 (2023)
  28. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Wang J, Li W, Li N, Wang B. Vaccines (Basel) 11 1459 (2023)
  29. Immunogenicity Assessment of Different Segments and Domains of Group a Streptococcal C5a Peptidase and Their Application Potential as Carrier Protein for Glycoconjugate Vaccine Development. Wang G, Zhao J, Zhao Y, Wang S, Feng S, Gu G. Vaccines (Basel) 9 (2021)