1v57 Citations

Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide.

Proc Natl Acad Sci U S A 101 8876-81 (2004)
Cited: 67 times
EuropePMC logo PMID: 15184683

Abstract

Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of secreted and membrane proteins in bacteria. DsbG, a member of this family, has disulfide bond isomerase and chaperone activity. Here, we present two crystal structures of DsbG at 1.7and 2.0-A resolution that are meant to represent the reduced and oxidized forms, respectively. The oxidized structure, however, reveals a mixture of both redox forms, suggesting that oxidized DsbG is less stable than the reduced form. This trait would contribute to DsbG isomerase activity, which requires that the active-site Cys residues are kept reduced, regardless of the highly oxidative environment of the periplasm. We propose that a Thr residue that is conserved in the cis-Pro loop of DsbG and DsbC but not found in other Dsb proteins could play a role in this process. Also, the structure of DsbG reveals an unanticipated and surprising feature that may help define its specific role in oxidative protein folding. Thus, the dimensions and surface features of DsbG show a very large and charged binding surface that is consistent with interaction with globular protein substrates having charged surfaces. This finding suggests that, rather than catalyzing disulfide rearrangement in unfolded substrates, DsbG may preferentially act later in the folding process to catalyze disulfide rearrangement in folded or partially folded proteins.

Reviews - 1v57 mentioned but not cited (1)

  1. Thioredoxin-like proteins in F and other plasmid systems. Hemmis CW, Schildbach JF. Plasmid 70 168-189 (2013)

Articles - 1v57 mentioned but not cited (6)

  1. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Heras B, Edeling MA, Schirra HJ, Raina S, Martin JL. Proc Natl Acad Sci U S A 101 8876-8881 (2004)
  2. Laboratory evolution of one disulfide isomerase to resemble another. Hiniker A, Ren G, Heras B, Zheng Y, Laurinec S, Jobson RW, Stuckey JA, Martin JL, Bardwell JC. Proc Natl Acad Sci U S A 104 11670-11675 (2007)
  3. An extended active-site motif controls the reactivity of the thioredoxin fold. Mavridou DA, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. J Biol Chem 289 8681-8696 (2014)
  4. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase. Chatelle C, Kraemer S, Ren G, Chmura H, Marechal N, Boyd D, Roggemans C, Ke N, Riggs P, Bardwell J, Berkmen M. Antioxid Redox Signal 23 945-957 (2015)
  5. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase. Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL. J Biol Chem 289 2563-2576 (2014)
  6. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant. Lafaye C, Van Molle I, Tamu Dufe V, Wahni K, Boudier A, Leroy P, Collet JF, Messens J. J Biol Chem 291 15020-15028 (2016)


Reviews citing this publication (22)

  1. Structure, function, and mechanism of thioredoxin proteins. Collet JF, Messens J. Antioxid Redox Signal 13 1205-1216 (2010)
  2. Protein disulfide isomerase: the structure of oxidative folding. Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ. Trends Biochem Sci 31 455-464 (2006)
  3. DSB proteins and bacterial pathogenicity. Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. Nat Rev Microbiol 7 215-225 (2009)
  4. Thioredoxins and glutaredoxins as facilitators of protein folding. Berndt C, Lillig CH, Holmgren A. Biochim Biophys Acta 1783 641-650 (2008)
  5. Protein sulfenic acid formation: from cellular damage to redox regulation. Roos G, Messens J. Free Radic Biol Med 51 314-326 (2011)
  6. How proteins form disulfide bonds. Depuydt M, Messens J, Collet JF. Antioxid Redox Signal 15 49-66 (2011)
  7. Pathways of disulfide bond formation in Escherichia coli. Messens J, Collet JF. Int J Biochem Cell Biol 38 1050-1062 (2006)
  8. Mechanisms of oxidative protein folding in the bacterial cell envelope. Kadokura H, Beckwith J. Antioxid Redox Signal 13 1231-1246 (2010)
  9. Production of disulfide-bonded proteins in Escherichia coli. Berkmen M. Protein Expr Purif 82 240-251 (2012)
  10. Disulfide bond formation in prokaryotes: history, diversity and design. Hatahet F, Boyd D, Beckwith J. Biochim Biophys Acta 1844 1402-1414 (2014)
  11. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Antioxid Redox Signal 14 1729-1760 (2011)
  12. Disulfide bond formation system in Escherichia coli. Inaba K. J Biochem 146 591-597 (2009)
  13. Disulfide bond isomerization in prokaryotes. Gleiter S, Bardwell JC. Biochim Biophys Acta 1783 530-534 (2008)
  14. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Smith RP, Paxman JJ, Scanlon MJ, Heras B. Molecules 21 E811 (2016)
  15. The name's bond......disulfide bond. Heras B, Kurz M, Shouldice SR, Martin JL. Curr Opin Struct Biol 17 691-698 (2007)
  16. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Delaunay-Moisan A, Ponsero A, Toledano MB. Antioxid Redox Signal 27 1178-1199 (2017)
  17. Bacterial thiol oxidoreductases - from basic research to new antibacterial strategies. Bocian-Ostrzycka KM, Grzeszczuk MJ, Banaś AM, Jagusztyn-Krynicka EK. Appl Microbiol Biotechnol 101 3977-3989 (2017)
  18. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Piek S, Kahler CM. Front Cell Infect Microbiol 2 162 (2012)
  19. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Front Microbiol 6 570 (2015)
  20. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. Bushweller JH. J Mol Biol 432 5091-5103 (2020)
  21. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Crit Rev Microbiol 45 433-450 (2019)
  22. Scs system links copper and redox homeostasis in bacterial pathogens. Méndez AAE, Argüello JM, Soncini FC, Checa SK. J Biol Chem 300 105710 (2024)

Articles citing this publication (38)

  1. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H. Cell 124 61-73 (2006)
  2. A periplasmic reducing system protects single cysteine residues from oxidation. Depuydt M, Leonard SE, Vertommen D, Denoncin K, Morsomme P, Wahni K, Messens J, Carroll KS, Collet JF. Science 326 1109-1111 (2009)
  3. Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase. Wang C, Li W, Ren J, Fang J, Ke H, Gong W, Feng W, Wang CC. Antioxid Redox Signal 19 36-45 (2013)
  4. Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HS, Lipton SA. Neuron 53 53-64 (2007)
  5. Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. Ren G, Stephan D, Xu Z, Zheng Y, Tang D, Harrison RS, Kurz M, Jarrott R, Shouldice SR, Hiniker A, Martin JL, Heras B, Bardwell JC. J Biol Chem 284 10150-10159 (2009)
  6. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin. Jurado P, de Lorenzo V, Fernández LA. J Mol Biol 357 49-61 (2006)
  7. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF. Mol Microbiol 67 336-349 (2008)
  8. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Maeda K, Hägglund P, Finnie C, Svensson B, Henriksen A. Structure 14 1701-1710 (2006)
  9. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K. Mol Cell 27 29-40 (2007)
  10. AMPA receptor ligand binding domain mobility revealed by functional cross linking. Plested AJ, Mayer ML. J Neurosci 29 11912-11923 (2009)
  11. A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis. Gay LM, Ng HL, Alber T. J Mol Biol 360 409-420 (2006)
  12. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding. Knappe TA, Eckert B, Schaarschmidt P, Scholz C, Schmid FX. J Mol Biol 368 1458-1468 (2007)
  13. Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Vera M, Krok B, Bellenberg S, Sand W, Poetsch A. Proteomics 13 1133-1144 (2013)
  14. Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P, Glockshuber R, O'Neill SL, Heras B, Martin JL. Antioxid Redox Signal 11 1485-1500 (2009)
  15. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. Arts IS, Ball G, Leverrier P, Garvis S, Nicolaes V, Vertommen D, Ize B, Tamu Dufe V, Messens J, Voulhoux R, Collet JF. mBio 4 e00912-13 (2013)
  16. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. Roszczenko P, Radomska KA, Wywial E, Collet JF, Jagusztyn-Krynicka EK. PLoS One 7 e46563 (2012)
  17. Thermodynamic aspects of DsbD-mediated electron transport. Rozhkova A, Glockshuber R. J Mol Biol 380 783-788 (2008)
  18. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. Chim N, Harmston CA, Guzman DJ, Goulding CW. BMC Struct Biol 13 23 (2013)
  19. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region. Ouyang N, Gao YG, Hu HY, Xia ZX. Proteins 65 1021-1031 (2006)
  20. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. Chim N, Riley R, The J, Im S, Segelke B, Lekin T, Yu M, Hung LW, Terwilliger T, Whitelegge JP, Goulding CW. J Mol Biol 396 1211-1226 (2010)
  21. Structural and functional characterization of Helicobacter pylori DsbG. Yoon JY, Kim J, Lee SJ, Kim HS, Im HN, Yoon HJ, Kim KH, Kim SJ, Han BW, Suh SW. FEBS Lett 585 3862-3867 (2011)
  22. Mutational alterations of the key cis proline residue that cause accumulation of enzymatic reaction intermediates of DsbA, a member of the thioredoxin superfamily. Kadokura H, Nichols L, Beckwith J. J Bacteriol 187 1519-1522 (2005)
  23. Structural and functional characterization of ScsC, a periplasmic thioredoxin-like protein from Salmonella enterica serovar Typhimurium. Shepherd M, Heras B, Achard ME, King GJ, Argente MP, Kurth F, Taylor SL, Howard MJ, King NP, Schembri MA, McEwan AG. Antioxid Redox Signal 19 1494-1506 (2013)
  24. The structure of G4, the poxvirus disulfide oxidoreductase essential for virus maturation and infectivity. Su HP, Lin DY, Garboczi DN. J Virol 80 7706-7713 (2006)
  25. Molecular and Structural Characterization of a Novel Escherichia coli Interleukin Receptor Mimic Protein. Moriel DG, Heras B, Paxman JJ, Lo AW, Tan L, Sullivan MJ, Dando SJ, Beatson SA, Ulett GC, Schembri MA. mBio 7 e02046 (2016)
  26. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Front Microbiol 6 1065 (2015)
  27. A shape-shifting redox foldase contributes to Proteus mirabilis copper resistance. Furlong EJ, Lo AW, Kurth F, Premkumar L, Totsika M, Achard MES, Halili MA, Heras B, Whitten AE, Choudhury HG, Schembri MA, Martin JL. Nat Commun 8 16065 (2017)
  28. Stereodivergent Chirality Transfer by Noncovalent Control of Disulfide Bonds. Zhang Q, Crespi S, Toyoda R, Costil R, Browne WR, Qu DH, Tian H, Feringa BL. J Am Chem Soc 144 4376-4382 (2022)
  29. Crystal structure of the periplasmic disulfide-bond isomerase DsbC from Salmonella enterica serovar Typhimurium and the mechanistic implications. Jiao L, Kim JS, Song WS, Yoon BY, Lee K, Ha NC. J Struct Biol 183 1-10 (2013)
  30. Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Kurz M, Iturbe-Ormaetxe I, Jarrott R, Cowieson N, Robin G, Jones A, King GJ, Frei P, Glockshuber R, O'Neill SL, Heras B, Martin JL. Protein Expr Purif 59 266-273 (2008)
  31. Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione peroxidase-like enzyme I). Patel S, Hussain S, Harris R, Sardiwal S, Kelly JM, Wilkinson SR, Driscoll PC, Djordjevic S. Biochem J 425 513-522 (2010)
  32. Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231). Bocian-Ostrzycka KM, Grzeszczuk MJ, Banaś AM, Jastrząb K, Pisarczyk K, Kolarzyk A, Łasica AM, Collet JF, Jagusztyn-Krynicka EK. Front Microbiol 7 1158 (2016)
  33. C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. PLoS One 15 e0230366 (2020)
  34. The Chaperone Activities of DsbG and Spy Restore Peptidoglycan Biosynthesis in the elyC Mutant by Preventing Envelope Protein Aggregation. Kouidmi I, Alvarez L, Collet JF, Cava F, Paradis-Bleau C. J Bacteriol 200 e00245-18 (2018)
  35. Co-expression of Dsb proteins enables soluble expression of a single-chain variable fragment (scFv) against human type 1 insulin-like growth factor receptor (IGF-1R) in E. coli. Sun XW, Wang XH, Yao YB. World J Microbiol Biotechnol 30 3221-3227 (2014)
  36. The suppressor of copper sensitivity protein C from Caulobacter crescentus is a trimeric disulfide isomerase that binds copper(I) with subpicomolar affinity. Petit GA, Hong Y, Djoko KY, Whitten AE, Furlong EJ, McCoy AJ, Gulbis JM, Totsika M, Martin JL, Halili MA. Acta Crystallogr D Struct Biol 78 337-352 (2022)
  37. Interaction between plate make and protein in protein crystallisation screening. King GJ, Chen KE, Robin G, Forwood JK, Heras B, Thakur AS, Kobe B, Blomberg SP, Martin JL. PLoS One 4 e7851 (2009)
  38. Stem cells adaptive network: mechanism and implications for evolution and disease development. Hamlat A, Pasqualini E. Med Hypotheses 69 610-617 (2007)


Related citations provided by authors (1)

  1. Dehydration converts DsbG crystal diffraction from low to high resolution.. Heras B, Edeling MA, Byriel KA, Jones A, Raina S, Martin JL Structure 11 139-145 (2003)