1uzf Citations

Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme.

Biochemistry 43 8718-24 (2004)
Cited: 136 times
EuropePMC logo PMID: 15236580

Abstract

Angiotensin converting enzyme (ACE) plays a critical role in the circulating or endocrine renin-angiotensin system (RAS) as well as the local regulation that exists in tissues such as the myocardium and skeletal muscle. Here we report the high-resolution crystal structures of testis ACE (tACE) in complex with the first successfully designed ACE inhibitor captopril and enalaprilat, the Phe-Ala-Pro analogue. We have compared these structures with the recently reported structure of a tACE-lisinopril complex [Natesh et al. (2003) Nature 421, 551-554]. The analyses reveal that all three inhibitors make direct interactions with the catalytic Zn(2+) ion at the active site of the enzyme: the thiol group of captopril and the carboxylate group of enalaprilat and lisinopril. Subtle differences are also observed at other regions of the binding pocket. These are compared with N-domain models and discussed with reference to published biochemical data. The chloride coordination geometries of the three structures are discussed and compared with other ACE analogues. It is anticipated that the molecular details provided by these structures will be used to improve the binding and/or the design of new, more potent domain-specific inhibitors of ACE that could serve as new generation antihypertensive drugs.

Reviews - 1uzf mentioned but not cited (2)

  1. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Biochem Pharmacol 181 114096 (2020)
  2. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Caballero J. Molecules 25 E295 (2020)

Articles - 1uzf mentioned but not cited (34)

  1. A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment. Li X, Xu X, Wang J, Yu H, Wang X, Yang H, Xu H, Tang S, Li Y, Yang L, Huang L, Wang Y, Yang S. PLoS One 7 e43918 (2012)
  2. MMDB: annotating protein sequences with Entrez's 3D-structure database. Wang Y, Addess KJ, Chen J, Geer LY, He J, He S, Lu S, Madej T, Marchler-Bauer A, Thiessen PA, Zhang N, Bryant SH. Nucleic Acids Res. 35 D298-300 (2007)
  3. Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, Pujadas G, Muguerza B. PLoS ONE 7 e49493 (2012)
  4. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. Da C, Kireev D. J Chem Inf Model 54 2555-2561 (2014)
  5. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol. Sin. 30 1694-1708 (2009)
  6. Binding-site assessment by virtual fragment screening. Huang N, Jacobson MP. PLoS One 5 e10109 (2010)
  7. Inhibition mechanism and model of an angiotensin I-converting enzyme (ACE)-inhibitory hexapeptide from yeast (Saccharomyces cerevisiae). Ni H, Li L, Liu G, Hu SQ. PLoS ONE 7 e37077 (2012)
  8. Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis. Asoodeh A, Homayouni-Tabrizi M, Shabestarian H, Emtenani S, Emtenani S. J Food Drug Anal 24 332-342 (2016)
  9. Inhibitor and substrate binding by angiotensin-converting enzyme: quantum mechanical/molecular mechanical molecular dynamics studies. Wang X, Wu S, Xu D, Xie D, Guo H. J Chem Inf Model 51 1074-1082 (2011)
  10. PharmGKB summary: very important pharmacogene information for angiotensin-converting enzyme. Thorn CF, Klein TE, Altman RB. Pharmacogenet. Genomics 20 143-146 (2010)
  11. Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide. Hamdi M, Abdel-Bar HM, Elmowafy E, El-Khouly A, Mansour M, Awad GAS. ACS Omega 6 6848-6860 (2021)
  12. Characterization of ACE Inhibitory Peptides Prepared from Pyropia pseudolinearis Protein. Kumagai Y, Toji K, Katsukura S, Morikawa R, Uji T, Yasui H, Shimizu T, Kishimura H. Mar Drugs 19 200 (2021)
  13. Interkingdom pharmacology of Angiotensin-I converting enzyme inhibitor phosphonates produced by actinomycetes. Kramer GJ, Mohd A, Schwager SL, Masuyer G, Acharya KR, Sturrock ED, Bachmann BO. ACS Med Chem Lett 5 346-351 (2014)
  14. A computational drug-target network for yuanhu zhitong prescription. Xu H, Tao Y, Lu P, Wang P, Zhang F, Yuan Y, Wang S, Xiao X, Yang H, Huang L. Evid Based Complement Alternat Med 2013 658531 (2013)
  15. Prediction of COVID-19 manipulation by selective ACE inhibitory compounds of Potentilla reptant root: In silico study and ADMET profile. Xu Y, Al-Mualm M, Terefe EM, Shamsutdinova MI, Opulencia MJC, Alsaikhan F, Turki Jalil A, Hammid AT, Enayati A, Mirzaei H, Khori V, Jabbari A, Salehi A, Soltani A, Mohamed A. Arab J Chem 15 103942 (2022)
  16. Selaginellin B induces apoptosis and autophagy in pancreatic cancer cells via the JAK2/STAT3 signaling pathway. Chu P, Wang S, Zhu X, Yang Y, Li H, Tesfaldet T, Shopit A, Yang Y, Ma X, Peng J, Tang Z, Sun Z. Am J Transl Res 12 7127-7143 (2020)
  17. Identification of natural inhibitors against angiotensin I converting enzyme for cardiac safety using induced fit docking and MM-GBSA studies. Vijayakumar B, Parasuraman S, Raveendran R, Velmurugan D. Pharmacogn Mag 10 S639-44 (2014)
  18. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets. Mashiyama ST, Koupparis K, Caffrey CR, McKerrow JH, Babbitt PC. PLoS Negl Trop Dis 6 e1942 (2012)
  19. Docking Studies of Methylthiomorpholin Phenols (LQM300 Series) with Angiotensin-Converting Enzyme (ACE). Vázquez-Valadez VH, Abrego VH, Martínez PA, Torres G, Zúñiga O, Escutia D, Vilchis R, Velázquez AM, Martínez L, Ruiz M, Camacho B, López-Castañares R, Angeles E. Open Med Chem J 7 30-38 (2013)
  20. Extrapolative prediction using physically-based QSAR. Cleves AE, Jain AN. J. Comput. Aided Mol. Des. 30 127-152 (2016)
  21. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. Lu Y, Wang Y, Huang D, Bian Z, Lu P, Fan D, Wang X. J Zhejiang Univ Sci B 22 575-589 (2021)
  22. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Mar Drugs 20 176 (2022)
  23. Targeting Metalloenzymes for Therapeutic Intervention. Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Chem. Rev. 119 1323-1455 (2019)
  24. A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation. Šudomová M, Hassan STS, Khan H, Rasekhian M, Nabavi SM. Biomolecules 9 (2019)
  25. Angiotensin Converting Enzyme (ACE)-Peptide Interactions: Inhibition Kinetics, In Silico Molecular Docking and Stability Study of Three Novel Peptides Generated from Palm Kernel Cake Proteins. Zarei M, Abidin NBZ, Auwal SM, Chay SY, Haiyee ZA, Sikin AM, Saari N. Biomolecules 9 (2019)
  26. Brassicasterol with Dual Anti-Infective Properties against HSV-1 and Mycobacterium tuberculosis, and Cardiovascular Protective Effect: Nonclinical In Vitro and In Silico Assessments. Hassan STS. Biomedicines 8 (2020)
  27. Characterisation of Bioactive Peptides from Red Alga Gracilariopsis chorda. Mune Mune MA, Miyabe Y, Shimizu T, Matsui W, Kumagai Y, Kishimura H. Mar Drugs 21 49 (2023)
  28. Identification, structure-activity relationship and in silico molecular docking analyses of five novel angiotensin I-converting enzyme (ACE)-inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N. PLoS ONE 14 e0197644 (2019)
  29. In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. Hassan STS, Berchová-Bímová K, Šudomová M, Malaník M, Šmejkal K, Rengasamy KRR. J Clin Med 7 (2018)
  30. Inhibition kinetics, molecular docking, and stability studies of the effect of papain-generated peptides from palm kernel cake proteins on angiotensin-converting enzyme (ACE). Zarei M, Ghanbari R, Zainal N, Ovissipour R, Saari N. Food Chem (Oxf) 5 100147 (2022)
  31. Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Li Y, Aiello G, Fassi EMA, Boschin G, Bartolomei M, Bollati C, Roda G, Arnoldi A, Grazioso G, Lammi C. Nutrients 13 1624 (2021)
  32. Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts-milts: Preparation, characterization, molecular docking study, and antioxidant function on H2O2-damaged human umbilical vein endothelial cells. Suo SK, Zheng SL, Chi CF, Luo HY, Wang B. Front Nutr 9 957778 (2022)
  33. Production, identification, in silico analysis, and cytoprotection on H2O2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Zhu WY, Wang YM, Ge MX, Wu HW, Zheng SL, Zheng HY, Wang B. Front Nutr 10 1197382 (2023)
  34. Rare genetic variability in human drug target genes modulates drug response and can guide precision medicine. Zhou Y, Arribas GH, Turku A, Jürgenson T, Mkrtchian S, Krebs K, Wang Y, Svobodova B, Milani L, Schulte G, Korabecny J, Gastaldello S, Lauschke VM. Sci Adv 7 eabi6856 (2021)


Reviews citing this publication (7)

  1. Medicinal Thiols: Current Status and New Perspectives. Pfaff AR, Beltz J, King E, Ercal N. Mini Rev Med Chem 20 513-529 (2020)
  2. Chronotherapy for Hypertension. Bowles NP, Thosar SS, Herzig MX, Shea SA. Curr. Hypertens. Rep. 20 97 (2018)
  3. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Regulska K, Stanisz B, Regulski M, Murias M. Drug Discov. Today 19 1731-1743 (2014)
  4. Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Dalhoff A. Infection 49 569-589 (2021)
  5. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Front Pharmacol 13 968104 (2022)
  6. ACE and ACE2: insights from Drosophila and implications for COVID-19. Herrera P, Cauchi RJ. Heliyon 7 e08555 (2021)
  7. Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications. de Oliveira MR, Silva TJ, Barros E, Guimarães VM, Baracat-Pereira MC, Eller MR, Dos Reis Coimbra JS, de Oliveira EB. Appl. Biochem. Biotechnol. 185 884-908 (2018)

Articles citing this publication (93)

  1. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. Corradi HR, Schwager SL, Nchinda AT, Sturrock ED, Acharya KR. J. Mol. Biol. 357 964-974 (2006)
  2. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Liénard BM, Garau G, Horsfall L, Karsisiotis AI, Damblon C, Lassaux P, Papamicael C, Roberts GC, Galleni M, Dideberg O, Frère JM, Schofield CJ. Org. Biomol. Chem. 6 2282-2294 (2008)
  3. Enantioselective synthesis of 2-methyl indolines by palladium catalysed asymmetric C(sp3)-H activation/cyclisation. Anas S, Cordi A, Kagan HB. Chem. Commun. (Camb.) 47 11483-11485 (2011)
  4. Substrate interactions with human ferrochelatase. Medlock A, Swartz L, Dailey TA, Dailey HA, Lanzilotta WN. Proc. Natl. Acad. Sci. U.S.A. 104 1789-1793 (2007)
  5. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. Krüger DM, Evers A. ChemMedChem 5 148-158 (2010)
  6. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. Pina AS, Roque AC. J. Mol. Recognit. 22 162-168 (2009)
  7. Molecular mechanism of imidapril for cardiovascular protection via inhibition of MMP-9. Yamamoto D, Takai S, Jin D, Inagaki S, Tanaka K, Miyazaki M. J. Mol. Cell. Cardiol. 43 670-676 (2007)
  8. Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis. Zhao J, Yang P, Li F, Tao L, Ding H, Rui Y, Cao Z, Zhang W. PLoS ONE 7 e44938 (2012)
  9. Crystal structure of the E. coli dipeptidyl carboxypeptidase Dcp: further indication of a ligand-dependent hinge movement mechanism. Comellas-Bigler M, Lang R, Bode W, Maskos K. J. Mol. Biol. 349 99-112 (2005)
  10. Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. Guy JL, Jackson RM, Jensen HA, Hooper NM, Turner AJ. FEBS J. 272 3512-3520 (2005)
  11. Structure of testis ACE glycosylation mutants and evidence for conserved domain movement. Watermeyer JM, Sewell BT, Schwager SL, Natesh R, Corradi HR, Acharya KR, Sturrock ED. Biochemistry 45 12654-12663 (2006)
  12. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G. Peptides 31 482-488 (2010)
  13. Prediction of interaction mode between a typical ACE inhibitor and MMP-9 active site. Yamamoto D, Takai S, Miyazaki M. Biochem. Biophys. Res. Commun. 354 981-984 (2007)
  14. Botulinum neurotoxin serotype A inhibitors: small-molecule mercaptoacetamide analogs. Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR. Bioorg. Med. Chem. 17 3072-3079 (2009)
  15. Characterization of the first angiotensin-converting like enzyme in bacteria: Ancestor ACE is already active. Rivière G, Michaud A, Corradi HR, Sturrock ED, Ravi Acharya K, Cogez V, Bohin JP, Vieau D, Corvol P. Gene 399 81-90 (2007)
  16. Identification of protein fold topology shared between different folds inhibited by natural products. McArdle BM, Quinn RJ. Chembiochem 8 788-798 (2007)
  17. Inhibitory profiles of captopril on matrix metalloproteinase-9 activity. Yamamoto D, Takai S, Miyazaki M. Eur. J. Pharmacol. 588 277-279 (2008)
  18. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M. J Food Drug Anal 26 696-705 (2018)
  19. Evaluating molecular mechanism of hypotensive peptides interactions with renin and angiotensin converting enzyme. He R, Aluko RE, Ju XR. PLoS ONE 9 e91051 (2014)
  20. Identification of novel small-molecule inducers of fetal hemoglobin using pharmacophore and 'PSEUDO' receptor models. Bohacek R, Boosalis MS, McMartin C, Faller DV, Perrine SP. Chem Biol Drug Des 67 318-328 (2006)
  21. Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Andersson H, Hallberg M. Int J Hypertens 2012 789671 (2012)
  22. Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE). Yates CJ, Masuyer G, Schwager SL, Akif M, Sturrock ED, Acharya KR. J. Biol. Chem. 289 1798-1814 (2014)
  23. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 9 1356-1365 (2011)
  24. Three-dimensional holograph vector of atomic interaction field (3D-HoVAIF): a novel rotation-translation invariant 3D structure descriptor and its applications to peptides. Tian F, Zhou P, Lv F, Song R, Li Z. J. Pept. Sci. 13 549-566 (2007)
  25. Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. Rushworth CA, Guy JL, Turner AJ. FEBS J. 275 6033-6042 (2008)
  26. Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme using a novel derivative of lisinopril. Watermeyer JM, Kröger WL, O'Neill HG, Sewell BT, Sturrock ED. Biochem. J. 428 67-74 (2010)
  27. Free radical-mediated aryl amination: convergent two- and three-component couplings to chiral 2,3-disubstituted indolines. Viswanathan R, Smith CR, Prabhakaran EN, Johnston JN. J Org Chem 73 3040-3046 (2008)
  28. Structural diversity of angiotensin-converting enzyme. Bingham RJ, Dive V, Phillips SE, Shirras AD, Isaac RE. FEBS J. 273 362-373 (2006)
  29. Characterization of ACE-inhibitory peptide associated with antioxidant and anticoagulation properties. Yu Z, Yin Y, Zhao W, Wang F, Yu Y, Liu B, Liu J, Chen F. J. Food Sci. 76 C1149-55 (2011)
  30. Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors. Kiew LV, Chang CY, Huang SY, Wang PW, Heh CH, Liu CT, Cheng CH, Lu YX, Chen YC, Huang YX, Chang SY, Tsai HY, Kung YA, Huang PN, Hsu MH, Leo BF, Foo YY, Su CH, Hsu KC, Huang PH, Ng CJ, Kamarulzaman A, Yuan CJ, Shieh DB, Shih SR, Chung LY, Chang CC. Biosens Bioelectron 183 113213 (2021)
  31. Effect of varying chain length between P(1) and P(1') position of tripeptidomimics on activity of angiotensin-converting enzyme inhibitors. Chaudhary S, Vats ID, Chopra M, Biswas P, Pasha S. Bioorg. Med. Chem. Lett. 19 4364-4366 (2009)
  32. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. Shi A, Liu H, Liu L, Hu H, Wang Q, Adhikari B. PLoS ONE 9 e111188 (2014)
  33. Size of the aliphatic chain of sodium houttuyfonate analogs determines their affinity for renin and angiotensin I converting enzyme. Yuan L, Wu J, Aluko RE. Int. J. Biol. Macromol. 41 274-280 (2007)
  34. Counter-current chromatographic estimation of hydrophobicity of Z-(cis) and E-(trans) enalapril and kinetics of cis/trans isomerization. Shoji A, Yanagida A, Shindo H, Ito Y, Shibusawa Y. J Chromatogr A 1157 101-107 (2007)
  35. Novel mechanism of inhibition of human angiotensin-I-converting enzyme (ACE) by a highly specific phosphinic tripeptide. Akif M, Schwager SL, Anthony CS, Czarny B, Beau F, Dive V, Sturrock ED, Acharya KR. Biochem. J. 436 53-59 (2011)
  36. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Mercurio I, Tragni V, Busto F, De Grassi A, Pierri CL. Cell Mol Life Sci 78 1501-1522 (2021)
  37. Thermodynamic determination of the binding constants of angiotensin-converting enzyme inhibitors by a displacement method. Andújar-Sánchez M, Jara-Pérez V, Cámara-Artigas A. FEBS Lett. 581 3449-3454 (2007)
  38. A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE. Riviere G, Fellous A, Franco A, Bernay B, Favrel P. PLoS ONE 6 e27833 (2011)
  39. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4). Cameron RT, Coleman RG, Day JP, Yalla KC, Houslay MD, Adams DR, Shoichet BK, Baillie GS. Biochem. Pharmacol. 85 1297-1305 (2013)
  40. Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensin-I converting enzyme. Masuyer G, Akif M, Czarny B, Beau F, Schwager SL, Sturrock ED, Isaac RE, Dive V, Acharya KR. FEBS J. 281 943-956 (2014)
  41. Domain-selective ligand-binding modes and atomic level pharmacophore refinement in angiotensin I converting enzyme (ACE) inhibitors. Tzakos AG, Gerothanassis IP. Chembiochem 6 1089-1103 (2005)
  42. Interpretable correlation descriptors for quantitative structure-activity relationships. Spowage BM, Bruce CL, Hirst JD. J Cheminform 1 22 (2009)
  43. Validated ligand mapping of ACE active site. Kuster DJ, Marshall GR. J. Comput. Aided Mol. Des. 19 609-615 (2005)
  44. Allosteric inhibition of the neuropeptidase neurolysin. Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JH, Melikishvili M, Fried MG, Mortenson P, Charlton M, Patel Y, Courtney SM, Kruse CG, Rodgers DW. J. Biol. Chem. 289 35605-35619 (2014)
  45. Angiotensin I-converting enzyme-inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Fu Y, Young JF, Rasmussen MK, Dalsgaard TK, Lametsch R, Aluko RE, Therkildsen M. Food Res. Int. 89 373-381 (2016)
  46. Angiotensin-I-converting enzyme inhibitory peptides: Chemical feature based pharmacophore generation. Wang Z, Zhang S, Jin H, Wang W, Huo J, Zhou L, Wang Y, Feng F, Zhang L. Eur J Med Chem 46 3428-3433 (2011)
  47. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations. Kuntze LB, Antonio RC, Izidoro-Toledo TC, Meschiari CA, Tanus-Santos JE, Gerlach RF. Basic Clin. Pharmacol. Toxicol. 114 233-239 (2014)
  48. Insight into the substrate length restriction of M32 carboxypeptidases: characterization of two distinct subfamilies. Lee MM, Isaza CE, White JD, Chen RP, Liang GF, He HT, Chan SI, Chan MK. Proteins 77 647-657 (2009)
  49. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril. Akif M, Masuyer G, Schwager SL, Bhuyan BJ, Mugesh G, Isaac RE, Sturrock ED, Acharya KR. FEBS J. 278 3644-3650 (2011)
  50. Synthesis of novel keto-ACE analogues as domain-selective angiotensin I-converting enzyme inhibitors. Nchinda AT, Chibale K, Redelinghuys P, Sturrock ED. Bioorg. Med. Chem. Lett. 16 4612-4615 (2006)
  51. The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Postlethwait JH, Massaquoi MS, Farnsworth DR, Yan YL, Guillemin K, Miller AC. Biol Open 10 bio058172 (2021)
  52. The molecular mechanisms of interactions between bioactive peptides and angiotensin-converting enzyme. Pan D, Guo H, Zhao B, Cao J. Bioorg. Med. Chem. Lett. 21 3898-3904 (2011)
  53. Antioxidant activity of peptide-based angiotensin converting enzyme inhibitors. Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 10 2237-2247 (2012)
  54. Design, synthesis and evaluation of novel 2-hydroxypyrrolobenzodiazepine-5,11-dione analogues as potent angiotensin converting enzyme (ACE) inhibitors. Addla D, Jallapally A, Kanwal A, Sridhar B, Banerjee SK, Kantevari S. Bioorg. Med. Chem. 21 4485-4493 (2013)
  55. Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. Fu Y, Alashi AM, Young JF, Therkildsen M, Aluko RE. Int. J. Biol. Macromol. 101 207-213 (2017)
  56. Prediction of ACE-I Inhibitory Peptides Derived from Chickpea (Cicer arietinum L.): In Silico Assessments Using Simulated Enzymatic Hydrolysis, Molecular Docking and ADMET Evaluation. Arámburo-Gálvez JG, Arvizu-Flores AA, Cárdenas-Torres FI, Cabrera-Chávez F, Ramírez-Torres GI, Flores-Mendoza LK, Gastelum-Acosta PE, Figueroa-Salcido OG, Ontiveros N. Foods 11 1576 (2022)
  57. Role of two chloride-binding sites in functioning of testicular angiotensin-converting enzyme. Moiseeva NA, Binevski PV, Baskin II, Palyulin VA, Kost OA. Biochemistry Mosc. 70 1167-1172 (2005)
  58. The molecular basis for the selection of captopril cis and trans conformations by angiotensin I converting enzyme. Tzakos AG, Naqvi N, Comporozos K, Pierattelli R, Theodorou V, Husain A, Gerothanassis IP. Bioorg. Med. Chem. Lett. 16 5084-5087 (2006)
  59. The sensitivity of the cis/trans-isomerization of enalapril and enalaprilat to solvent conditions. Ledger R, Stellwagen E. J. Pharm. Pharmacol. 57 845-850 (2005)
  60. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization. Ibrahim TM, Bauer MR, Boeckler FM. J Cheminform 7 21 (2015)
  61. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. FEBS Lett 594 1960-1973 (2020)
  62. Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling. Redelinghuys P, Nchinda AT, Chibale K, Sturrock ED. Biol. Chem. 387 461-466 (2006)
  63. Vascular expression of germinal ACE fails to maintain normal blood pressure in ACE-/- mice. Kessler SP, Senanayake Pd, Gaughan C, Sen GC. FASEB J. 21 156-166 (2007)
  64. (-)-Epigallocatechin-3-gallate inhibits human angiotensin-converting enzyme activity through an autoxidation-dependent mechanism. Liu Z, Nakashima S, Nakamura T, Munemasa S, Murata Y, Nakamura Y. J. Biochem. Mol. Toxicol. 31 (2017)
  65. Activity prediction and molecular mechanism of bovine blood derived angiotensin I-converting enzyme inhibitory peptides. Zhang T, Nie S, Liu B, Yu Y, Zhang Y, Liu J. PLoS ONE 10 e0119598 (2015)
  66. Effect of peptide-based captopril analogues on angiotensin converting enzyme activity and peroxynitrite-mediated tyrosine nitration. Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 9 5185-5192 (2011)
  67. Significance of matrix metalloproteinase-9 inhibition by imidapril for prevention of abdominal aortic aneurysms in angiotensin II type 1 receptor-knockout mice. Takai S, Jin D, Yamamoto D, Li ZL, Otsuki Y, Miyazaki M. J Pharmacol Sci 123 185-194 (2013)
  68. Study of a lipophilic captopril analogue binding to angiotensin I converting enzyme. Dalkas GA, Marchand D, Galleyrand JC, Martinez J, Spyroulias GA, Cordopatis P, Cavelier F. J. Pept. Sci. 16 91-97 (2010)
  69. Synthesis and biological evaluation of N-mercaptoacylproline and N-mercaptoacylthiazolidine-4-carboxylic acid derivatives as leukotriene A4 hydrolase inhibitors. Enomoto H, Morikawa Y, Miyake Y, Tsuji F, Mizuchi M, Suhara H, Fujimura K, Horiuchi M, Ban M. Bioorg. Med. Chem. Lett. 18 4529-4532 (2008)
  70. ACE-domain selectivity extends beyond direct interacting residues at the active site. Cozier GE, Lubbe L, Sturrock ED, Acharya KR. Biochem J 477 1241-1259 (2020)
  71. Approaches towards the development of chimeric DPP4/ACE inhibitors for treating metabolic syndrome. Sattigeri JA, Sethi S, Davis JA, Ahmed S, Rayasam GV, Jadhav BG, Chilla SM, Datta D, Gadhave A, Tulasi VK, Jain T, Voleti S, Benjamin B, Udupa S, Jain G, Singh Y, Srinivas K, Bansal VS, Ray A, Bhatnagar PK, Cliffe IA. Bioorg. Med. Chem. Lett. 27 2313-2318 (2017)
  72. Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An In Silico and In Vitro Study. Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Al Dhaheri Y, Vijayan R. Biomolecules 10 (2020)
  73. Discovery of a potent angiotensin converting enzyme inhibitor via virtual screening. Ke Z, Su Z, Zhang X, Cao Z, Ding Y, Cao L, Ding G, Wang Z, Liu H, Xiao W. Bioorg. Med. Chem. Lett. 27 3688-3692 (2017)
  74. Selective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source. Cho H, Török F, Török B. Org. Biomol. Chem. 11 1209-1215 (2013)
  75. Spontaneous Hinge-Bending Motions of Angiotensin I Converting Enzyme: Role in Activation and Inhibition. Vy TT, Heo SY, Jung WK, Yi M. Molecules 25 (2020)
  76. Whey-Derived Peptides Interactions with ACE by Molecular Docking as a Potential Predictive Tool of Natural ACE Inhibitors. Chamata Y, Watson KA, Jauregi P. Int J Mol Sci 21 (2020)
  77. A simple method for determining the ligand affinity toward a zinc-enzyme model by using a TAMRA/TAMRA interaction. Kusamoto H, Shiba A, Tsunehiro M, Fujioka H, Kinoshita-Kikuta E, Kinoshita E, Koike T. Dalton Trans 47 1841-1848 (2018)
  78. Accurate aqueous proton dissociation constants calculations for selected angiotensin-converting enzyme inhibitors. Sramko M, Smiesko M, Remko M. J. Biomol. Struct. Dyn. 25 599-608 (2008)
  79. An ab initio quantum mechanical drug designing procedure: application to the design of balanced dual ACE/NEP inhibitors. Rao NK, Yadav A, Kumar Singh S. J Mol Model 15 1447-1462 (2009)
  80. Captopril inhibits matrix metalloproteinase activity and improves dentin bonding durability. Shu C, Zheng X, Wang Y, Xu Y, Zhang D, Deng S. Clin Oral Investig 26 3213-3225 (2022)
  81. Captopril/enalapril inhibit promiscuous esterase activity of carbonic anhydrase at micromolar concentrations: An in vitro study. Esmaeili S, Ashrafi-Kooshk MR, Adibi H, Khodarahmi R. Chem. Biol. Interact. 265 24-35 (2017)
  82. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Sanna V, Satta S, Hsiai T, Sechi M. Eur J Med Chem 231 114121 (2022)
  83. Discovery and Characterization of a Dual-Function Peptide Derived from Bitter Gourd Seed Protein Using Two Orthogonal Bioassay-Guided Fractionations Coupled with In Silico Analysis. Hung WT, Sutopo CCY, Wu ML, Hsu JL. Pharmaceuticals (Basel) 16 1629 (2023)
  84. Effects of Hibiscus Sabdariffa Calyces Aqueous Extract on the Antihypertensive Potency of Captopril in the Two-Kidney-One-Clip Rat Hypertension Model. Nurfaradilla SA, Saputri FC, Harahap Y. Evid Based Complement Alternat Med 2019 9694212 (2019)
  85. Expression, purification, and physicochemical characterization of the N-terminal active site of human angiotensin-I converting enzyme. Vamvakas SS, Leondiadis L, Pairas G, Manessi-Zoupa E, Spyroulias GA, Cordopatis P. J. Pept. Sci. 13 31-36 (2007)
  86. Masking thiol reactivity with thioamide, thiourea, and thiocarbamate-based MBPs. Seo H, Kohlbrand AJ, Stokes RW, Chung J, Cohen SM. Chem Commun (Camb) 59 2283-2286 (2023)
  87. Pharmacophore alignment search tool: influence of the third dimension on text-based similarity searching. Hähnke V, Klenner A, Rippmann F, Schneider G. J Comput Chem 32 1618-1634 (2011)
  88. Protection against Oxidative Stress and Metabolic Alterations by Synthetic Peptides Derived from Erythrina edulis Seed Protein. Rodríguez-Arana N, Jiménez-Aliaga K, Intiquilla A, León JA, Flores E, Zavaleta AI, Izaguirre V, Solis-Calero C, Hernández-Ledesma B. Antioxidants (Basel) 11 2101 (2022)
  89. Purification, Characterization and Mechanistic Evaluation of Angiotensin Converting Enzyme Inhibitory Peptides Derived from Zizyphus Jujuba Fruit. Memarpoor-Yazdi M, Zare-Zardini H, Mogharrab N, Navapour L. Sci Rep 10 3976 (2020)
  90. QM/MM investigation of the catalytic mechanism of angiotensin-converting enzyme. Mu X, Zhang C, Xu D. J Mol Model 22 132 (2016)
  91. Studies on the Bioactivities of ACE-inhibitory Peptides with Phenylalanine C-terminus Using 3D-QSAR, Molecular Docking and in vitro Evaluation. Qi C, Lin G, Zhang R, Wu W. Mol Inform 36 (2017)
  92. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Abu Hasan Z', Williams H, Ismail NM, Othman H, Cozier GE, Acharya KR, Isaac RE. Sci Rep 7 45409 (2017)
  93. [Increase in lipophilicity of enalaprilat by complexation with copper(II) or zinc(II) Ions]. Fujioka H, Hieda Y, Kuramoto Y, Konishi K, Kinoshita-Kikuta E, Kinoshita E, Koike T. Yakugaku Zasshi 133 1135-1141 (2013)