1smp Citations

Crystal structure of a complex between Serratia marcescens metallo-protease and an inhibitor from Erwinia chrysanthemi.

J Mol Biol 248 653-61 (1995)
Cited: 54 times
EuropePMC logo PMID: 7752231

Abstract

The crystal structure of the complex between the 50 kDa metallo-endoproteinase from Serratia marcescens (SMP), a member of the metzincin superfamily, and an inhibitor from Erwinia chrysanthemi (Inh) was solved by molecular replacement using the known structure of SMP, and refined at 2.30 A resolution to a crystallographic R-factor of 0.195. The E. chrysanthemi inhibitor folds into a compact eight-stranded antiparallel beta-barrel of simple up-down topology such as is found for members of the retinol binding protein family. It mainly interacts with the protease via its five N-terminal residues, which insert into the active site cleft, occupying the S' sites. The first N-terminal residue, SerI1, is partially cleaved off by the protease, while SerI2 makes a hydrogen bond with the catalytically active glutamic acid, Glu177, of the protease. Further interactions are made between one face of the inhibitor formed by the strands s3, s4 and s5 and the protease segment 218 to 228, which is located immediately after the characteristic "Met-turn" of the metzincins.

Reviews - 1smp mentioned but not cited (2)

Articles - 1smp mentioned but not cited (11)

  1. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. Turk D, Janjić V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B. EMBO J. 20 6570-6582 (2001)
  2. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. Earl AM, Mohundro MM, Mian IS, Battista JR. J. Bacteriol. 184 6216-6224 (2002)
  3. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  4. Side-chain conformational entropy at protein-protein interfaces. Cole C, Warwicker J. Protein Sci 11 2860-2870 (2002)
  5. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  6. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  7. Recognizing protein-protein interfaces with empirical potentials and reduced amino acid alphabets. Launay G, Mendez R, Wodak S, Simonson T. BMC Bioinformatics 8 270 (2007)
  8. The Structure of Treponema pallidum Tp0751 (Pallilysin) Reveals a Non-canonical Lipocalin Fold That Mediates Adhesion to Extracellular Matrix Components and Interactions with Host Cells. Parker ML, Houston S, Pětrošová H, Lithgow KV, Hof R, Wetherell C, Kao WC, Lin YP, Moriarty TJ, Ebady R, Cameron CE, Boulanger MJ. PLoS Pathog. 12 e1005919 (2016)
  9. Predicting Protein-Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Kuo TH, Li KB. Int J Mol Sci 17 E1788 (2016)
  10. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Sudha G, Singh P, Swapna LS, Srinivasan N. Protein Sci. 24 1856-1873 (2015)
  11. Structure of a thermostable serralysin from Serratia sp. FS14 at 1.1 Å resolution. Wu D, Ran T, Wang W, Xu D. Acta Crystallogr F Struct Biol Commun 72 10-15 (2016)


Reviews citing this publication (11)

  1. The lipocalin protein family: structural and sequence overview. Flower DR, North AC, Sansom CE. Biochim. Biophys. Acta 1482 9-24 (2000)
  2. RTX proteins: a highly diverse family secreted by a common mechanism. Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. FEMS Microbiol. Rev. 34 1076-1112 (2010)
  3. Structural aspects of the metzincin clan of metalloendopeptidases. Gomis-Rüth FX. Mol. Biotechnol. 24 157-202 (2003)
  4. Insights into MMP-TIMP interactions. Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, Maskos K. Ann. N. Y. Acad. Sci. 878 73-91 (1999)
  5. The many faces of protease-protein inhibitor interaction. Otlewski J, Jelen F, Zakrzewska M, Oleksy A. EMBO J. 24 1303-1310 (2005)
  6. The Type 1 secretion pathway - the hemolysin system and beyond. Thomas S, Holland IB, Schmitt L. Biochim. Biophys. Acta 1843 1629-1641 (2014)
  7. Structure and mechanism of metallocarboxypeptidases. Gomis-Rüth FX. Crit. Rev. Biochem. Mol. Biol. 43 319-345 (2008)
  8. Architecture and function of metallopeptidase catalytic domains. Cerdà-Costa N, Gomis-Rüth FX. Protein Sci. 23 123-144 (2014)
  9. Phage display as a powerful tool to engineer protease inhibitors. Zani ML, Moreau T. Biochimie 92 1689-1704 (2010)
  10. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Bulutoglu B, Banta S. Gels 5 (2019)
  11. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Tušar L, Usenik A, Turk B, Turk D. Int J Mol Sci 22 (2021)

Articles citing this publication (30)

  1. Analysis of protein-protein interaction sites using surface patches. Jones S, Thornton JM. J. Mol. Biol. 272 121-132 (1997)
  2. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. Collinson SK, Parker JM, Hodges RS, Kay WW. J. Mol. Biol. 290 741-756 (1999)
  3. The 1.8-A crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. Breustedt DA, Korndörfer IP, Redl B, Skerra A. J. Biol. Chem. 280 484-493 (2005)
  4. Letter Structure of astacin with a transition-state analogue inhibitor. Grams F, Dive V, Yiotakis A, Yiallouros I, Vassiliou S, Zwilling R, Bode W, Stöcker W. Nat. Struct. Biol. 3 671-675 (1996)
  5. Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Aghajari N, Van Petegem F, Villeret V, Chessa JP, Gerday C, Haser R, Van Beeumen J. Proteins 50 636-647 (2003)
  6. Molecular analysis of ulilysin, the structural prototype of a new family of metzincin metalloproteases. Tallant C, García-Castellanos R, Seco J, Baumann U, Gomis-Rüth FX. J Biol Chem 281 17920-17928 (2006)
  7. Studies on the metal binding sites in the catalytic domain of beta1,4-galactosyltransferase. Boeggeman E, Qasba PK. Glycobiology 12 395-407 (2002)
  8. Crystal structure of rat liver betaine homocysteine s-methyltransferase reveals new oligomerization features and conformational changes upon substrate binding. González B, Pajares MA, Martínez-Ripoll M, Blundell TL, Sanz-Aparicio J. J. Mol. Biol. 338 771-782 (2004)
  9. Phosphinic peptides, the first potent inhibitors of astacin, behave as extremely slow-binding inhibitors. Yiallouros I, Vassiliou S, Yiotakis A, Zwilling R, Stöcker W, Dive V. Biochem. J. 331 ( Pt 2) 375-379 (1998)
  10. Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189. Hege T, Baumann U. J. Mol. Biol. 314 187-193 (2001)
  11. Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. Zhang L, Conway JF, Thibodeau PH. J. Biol. Chem. 287 4311-4322 (2012)
  12. Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ. J. Mol. Biol. 415 573-583 (2012)
  13. Staphostatins resemble lipocalins, not cystatins in fold. Rzychon M, Filipek R, Sabat A, Kosowska K, Dubin A, Potempa J, Bochtler M. Protein Sci. 12 2252-2256 (2003)
  14. Elucidation of the mode of interaction of thermolysin with a proteinaceous metalloproteinase inhibitor, SMPI, based on a model complex structure and a structural dynamics analysis. Tate S, Ohno A, Seeram SS, Hiraga K, Oda K, Kainosho M. J. Mol. Biol. 282 435-446 (1998)
  15. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. Butterworth MB, Zhang L, Liu X, Shanks RM, Thibodeau PH. PLoS ONE 9 e100313 (2014)
  16. A structural tree for proteins containing 3beta-corners. Efimov AV. FEBS Lett. 407 37-41 (1997)
  17. Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate. Marokházi J, Mihala N, Hudecz F, Fodor A, Gráf L, Venekei I. FEBS J. 274 1946-1956 (2007)
  18. Alkaline proteinase inhibitor of Pseudomonas aeruginosa: a mutational and molecular dynamics study of the role of N-terminal residues in the inhibition of Pseudomonas alkaline proteinase. Feltzer RE, Trent JO, Gray RD. J. Biol. Chem. 278 25952-25957 (2003)
  19. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. Zhang L, Morrison AJ, Thibodeau PH. PLoS ONE 10 e0138419 (2015)
  20. A bacterial protease inhibitor protects antigens delivered in oral vaccines from digestion while triggering specific mucosal immune responses. Ibañez AE, Coria LM, Carabajal MV, Delpino MV, Risso GS, Cobiello PG, Rinaldi J, Barrionuevo P, Bruno L, Frank F, Klinke S, Goldbaum FA, Briones G, Giambartolomei GH, Pasquevich KA, Cassataro J. J Control Release 220 18-28 (2015)
  21. Crystal structures of archaemetzincin reveal a moldable substrate-binding site. Graef C, Schacherl M, Waltersperger S, Baumann U. PLoS ONE 7 e43863 (2012)
  22. Feeding Anthrax: The Crystal Structure of Bacillus anthracis InhA Protease. Schacherl M, Baumann U. Structure 24 1-2 (2016)
  23. The Leu-3 residue of Serratia marcescens metalloprotease inhibitor is important in inhibitory activity and binding with Serratia marcescens metalloprotease. Bae KH, Kim IC, Kim KS, Shin YC, Byun SM. Arch. Biochem. Biophys. 352 37-43 (1998)
  24. Structural Basis for Latency and Function of Immune Inhibitor A Metallopeptidase, a Modulator of the Bacillus anthracis Secretome. Arolas JL, Goulas T, Pomerantsev AP, Leppla SH, Gomis-Rüth FX. Structure 24 25-36 (2016)
  25. The Yersinia pseudotuberculosis YplA phospholipase differs in its activity, regulation and secretion from that of the Yersinia enterocolitica YplA. Meysick KC, Seidman J, Falconio JR. Microb. Pathog. 47 24-32 (2009)
  26. A disordered region retains the full protease inhibitor activity and the capacity to induce CD8+ T cells in vivo of the oral vaccine adjuvant U-Omp19. Laura Darriba M, Castro CP, Coria LM, Bruno L, Laura Cerutti M, Otero LH, Chemes LB, Rasia RM, Klinke S, Cassataro J, Pasquevich KA. Comput Struct Biotechnol J 20 5098-5114 (2022)
  27. A new gene from Xenorhabdus bovienii and its encoded protease inhibitor protein against Acyrthosiphon pisum. Zeng F, Xue R, Zhang H, Jiang T. Pest Manag. Sci. 68 1345-1351 (2012)
  28. A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen Tannerella forsythia. Książek M, Goulas T, Mizgalska D, Rodríguez-Banqueri A, Eckhard U, Veillard F, Waligórska I, Benedyk-Machaczka M, Sochaj-Gregorczyk AM, Madej M, Thøgersen IB, Enghild JJ, Cuppari A, Arolas JL, de Diego I, López-Pelegrín M, Garcia-Ferrer I, Guevara T, Dive V, Zani ML, Moreau T, Potempa J, Gomis-Rüth FX. Chem Sci 14 869-888 (2023)
  29. Genome-based analysis of virulence determinants of a Serratia marcescens strain from soft tissues following a snake bite. Huang YT, Cheng JF, Liu YT, Mao YC, Wu MS, Liu PY. Future Microbiol 13 331-343 (2018)
  30. Production and Expression Optimization of Heterologous Serratiopeptidase. Rouhani M, Valizadeh V, Molasalehi S, Norouzian D. Iran J Public Health 49 931-939 (2020)


Related citations provided by authors (1)