1ry2 Citations

Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP.

Biochemistry 43 1425-31 (2004)
Cited: 71 times
EuropePMC logo PMID: 14769018

Abstract

Acetyl-coenzyme A synthetase (ACS) belongs to the family of AMP-forming enzymes that also includes acyl-CoA synthetases, firefly luciferase, and nonribosomal peptide synthetases. ACS catalyzes the two-step activation of acetate to acetyl-CoA: formation of an acetyl-AMP intermediate from acetate and ATP and the transfer of the acetyl group to CoA. In mammals, the acetyl-CoA product is used for biosynthesis of long chain fatty acids as well as energy production. We have determined the crystal structure of yeast ACS in a binary complex with AMP at 2.3 A resolution. The structure contains a large, N-terminal domain and a small, C-terminal domain. AMP is bound at the interface between the two domains. This structure represents a new conformation for the ACS enzyme, which may be competent for catalyzing the first step of the reaction. A Lys residue that is critical for this step is located in the active site. A rotation of 140 degrees in the small domain is needed for the binding of CoA and the catalysis of the second step. In contrast to the monomeric bacterial enzyme, yeast ACS is a stable trimer.

Reviews - 1ry2 mentioned but not cited (1)

Articles - 1ry2 mentioned but not cited (7)

  1. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris. Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC. Appl Environ Microbiol 78 6619-6629 (2012)
  2. The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Bernhardsgrütter I, Vögeli B, Wagner T, Peter DM, Cortina NS, Kahnt J, Bange G, Engilberge S, Girard E, Riobé F, Maury O, Shima S, Zarzycki J, Erb TJ. Nat Chem Biol 14 1127-1132 (2018)
  3. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket. Han X, Shen L, Wang Q, Cen X, Wang J, Wu M, Li P, Zhao W, Zhang Y, Zhao G. J Biol Chem 292 1374-1384 (2017)
  4. Giardia fatty acyl-CoA synthetases as potential drug targets. Guo F, Ortega-Pierres G, Argüello-García R, Zhang H, Zhu G. Front Microbiol 6 753 (2015)
  5. The structure of S. lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain. Mitchell CA, Tucker AC, Escalante-Semerena JC, Gulick AM. Proteins 83 575-581 (2015)
  6. Role of motif III in catalysis by acetyl-CoA synthetase. Ingram-Smith C, Thurman JL, Zimowski K, Smith KS. Archaea 2012 509579 (2012)
  7. The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases. Meng Y, Ingram-Smith C, Ahmed O, Smith K. Life (Basel) 13 1643 (2023)


Reviews citing this publication (6)

  1. Adenylate-forming enzymes. Schmelz S, Naismith JH. Curr Opin Struct Biol 19 666-671 (2009)
  2. Firefly luminescence: a historical perspective and recent developments. Fraga H. Photochem Photobiol Sci 7 146-158 (2008)
  3. Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. Marahiel MA. J Pept Sci 15 799-807 (2009)
  4. Protein Acetylation in Bacteria. VanDrisse CM, Escalante-Semerena JC. Annu Rev Microbiol 73 111-132 (2019)
  5. Fatty acid transport proteins and insulin resistance. Fisher RM, Gertow K. Curr Opin Lipidol 16 173-178 (2005)
  6. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)

Articles citing this publication (57)

  1. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. Watkins PA, Maiguel D, Jia Z, Pevsner J. J Lipid Res 48 2736-2750 (2007)
  2. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Reger AS, Wu R, Dunaway-Mariano D, Gulick AM. Biochemistry 47 8016-8025 (2008)
  3. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Reger AS, Carney JM, Gulick AM. Biochemistry 46 6536-6546 (2007)
  4. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Drake EJ, Nicolai DA, Gulick AM. Chem Biol 13 409-419 (2006)
  5. Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC. Plant Cell 22 3093-3104 (2010)
  6. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. Hughes AJ, Keatinge-Clay A. Chem Biol 18 165-176 (2011)
  7. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW. J Mol Biol 388 997-1008 (2009)
  8. Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. Bushley KE, Ripoll DR, Turgeon BG. BMC Evol Biol 8 328 (2008)
  9. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Lu X, Zhang H, Tonge PJ, Tan DS. Bioorg Med Chem Lett 18 5963-5966 (2008)
  10. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fleck CB, Brock M. Fungal Genet Biol 46 473-485 (2009)
  11. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH, White MF, Challis GL, Naismith JH. Nat Chem Biol 5 174-182 (2009)
  12. Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Wu R, Cao J, Lu X, Reger AS, Gulick AM, Dunaway-Mariano D. Biochemistry 47 8026-8039 (2008)
  13. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemistry 49 9292-9305 (2010)
  14. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D. Biochemistry 48 4115-4125 (2009)
  15. Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. Shi X, Yao D, Chen C. J Biol Chem 287 6336-6349 (2012)
  16. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. Osman KT, Du L, He Y, Luo Y. J Mol Biol 388 345-355 (2009)
  17. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Chembiochem 13 129-136 (2012)
  18. Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL. J Biol Chem 285 2415-2427 (2010)
  19. Antimicrobial peptide resistance of Vibrio cholerae results from an LPS modification pathway related to nonribosomal peptide synthetases. Henderson JC, Fage CD, Cannon JR, Brodbelt JS, Keatinge-Clay AT, Trent MS. ACS Chem Biol 9 2382-2392 (2014)
  20. CobB1 deacetylase activity in Streptomyces coelicolor. Mikulik K, Felsberg J, Kudrnáčová E, Bezoušková S, Setinová D, Stodůlková E, Zídková J, Zídek V. Biochem Cell Biol 90 179-187 (2012)
  21. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. J Biol Chem 285 9971-9980 (2010)
  22. Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase. Branchini BR, Murtiashaw MH, Carmody JN, Mygatt EE, Southworth TL. Bioorg Med Chem Lett 15 3860-3864 (2005)
  23. 13C Metabolic Flux Analysis of acetate conversion to lipids by Yarrowia lipolytica. Liu N, Qiao K, Stephanopoulos G. Metab Eng 38 86-97 (2016)
  24. AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization. Ingram-Smith C, Smith KS. Archaea 2 95-107 (2007)
  25. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Xu J, Liu N, Qiao K, Vogg S, Stephanopoulos G. Proc Natl Acad Sci U S A 114 E5308-E5316 (2017)
  26. Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis. Khare G, Gupta V, Gupta RK, Gupta R, Bhat R, Tyagi AK. PLoS One 4 e8387 (2009)
  27. A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Bräsen C, Urbanke C, Schönheit P. FEBS Lett 579 477-482 (2005)
  28. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. Hawkins AS, Han Y, Bennett RK, Adams MW, Adams MW, Kelly RM. J Biol Chem 288 4012-4022 (2013)
  29. Topology of the yeast fatty acid transport protein Fat1p: mechanistic implications for functional domains on the cytosolic surface of the plasma membrane. Obermeyer T, Fraisl P, DiRusso CC, Black PN. J Lipid Res 48 2354-2364 (2007)
  30. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. Mayer F, Küper U, Meyer C, Daxer S, Müller V, Rachel R, Huber H. J Bacteriol 194 1572-1581 (2012)
  31. Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates. Samanta SK, Harwood CS. Mol Microbiol 55 1151-1159 (2005)
  32. AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation. Bräsen C, Schönheit P. Extremophiles 9 355-365 (2005)
  33. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Noy T, Xu H, Blanchard JS. Arch Biochem Biophys 550-551 42-49 (2014)
  34. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. Angew Chem Int Ed Engl 57 11584-11588 (2018)
  35. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. Khurana P, Gokhale RS, Mohanty D. BMC Bioinformatics 11 57 (2010)
  36. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Li H, Melton EM, Quackenbush S, DiRusso CC, Black PN. Biochim Biophys Acta 1771 1246-1253 (2007)
  37. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase. Gimenez G, Metcalf P, Paterson NG, Sharpe ML. Sci Rep 6 27638 (2016)
  38. The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Shah MB, Ingram-Smith C, Cooper LL, Qu J, Meng Y, Smith KS, Gulick AM. Proteins 77 685-698 (2009)
  39. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mol Microbiol 111 1057-1073 (2019)
  40. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. Chen Y, Sun Y, Song H, Guo Z. J Biol Chem 290 23971-23983 (2015)
  41. Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans. Meng Y, Ingram-Smith C, Cooper LL, Smith KS. J Bacteriol 192 5982-5990 (2010)
  42. Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis. Witzgall F, Ewert W, Blankenfeldt W. Chembiochem 18 2045-2055 (2017)
  43. Ultra sensitive firefly luciferase-based protein-protein interaction assay (FlimPIA) attained by hinge region engineering and optimized reaction conditions. Kurihara M, Ohmuro-Matsuyama Y, Ayabe K, Yamashita T, Yamaji H, Ueda H. Biotechnol J 11 91-99 (2016)
  44. A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling. Nagati JS, Xu M, Garcia T, Comerford SA, Hammer RE, Garcia JA. PLoS One 14 e0225105 (2019)
  45. Computational study of the binding mechanism of medium chain acyl-CoA synthetase with substrate in Methanosarcina acetivorans. Du J, Wang X, Nie Q, Yang J, Yao X. J Biotechnol 259 160-167 (2017)
  46. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mol Microbiol 105 674-688 (2017)
  47. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus. Du L, Luo Y. F1000Res 3 106 (2014)
  48. Characterization and expression of AMP-forming Acetyl-CoA Synthetase from Dunaliella tertiolecta and its response to nitrogen starvation stress. Liang MH, Liang MH, Qv XY, Jin HH, Jiang JG. Sci Rep 6 23445 (2016)
  49. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC. Oosterkamp MJ, Boeren S, Atashgahi S, Plugge CM, Schaap PJ, Stams AJ. FEMS Microbiol Lett 362 fnv080 (2015)
  50. Luciferin Regeneration in Firefly Bioluminescence via Proton-Transfer-Facilitated Hydrolysis, Condensation and Chiral Inversion. Cheng YY, Liu YJ. Chemphyschem 20 1719-1727 (2019)
  51. Microbial compositions and metabolic interactions in one- and two-phase partitioning airlift bioreactors treating a complex VOC mixture. Wu C, Xu P, Xia Y, Li W, Li S, Wang X. J Ind Microbiol Biotechnol 44 1313-1324 (2017)
  52. Structural Characterization of the Reaction and Substrate Specificity Mechanisms of Pathogenic Fungal Acetyl-CoA Synthetases. Jezewski AJ, Alden KM, Esan TE, DeBouver ND, Abendroth J, Bullen JC, Calhoun BM, Potts KT, Murante DM, Hagen TJ, Fox D, Krysan DJ. ACS Chem Biol 16 1587-1599 (2021)
  53. Construction of an Acetate Metabolic Pathway to Enhance Electron Generation of Engineered Shewanella oneidensis. Zhang J, Chen Z, Liu C, Li J, An X, Wu D, Sun X, Zhang B, Fu L, Li F, Song H. Front Bioeng Biotechnol 9 757953 (2021)
  54. Mammalian acetate-dependent acetyl CoA synthetase 2 contains multiple protein destabilization and masking elements. Nagati JS, Kobeissy PH, Nguyen MQ, Xu M, Garcia T, Comerford SA, Hammer RE, Garcia JA. J Biol Chem 297 101037 (2021)
  55. Molecular Evolution of Lysine Biosynthesis in Agaricomycetes. Song Z, He M, Zhao R, Qi L, Chen G, Yin WB, Li W. J Fungi (Basel) 8 37 (2021)
  56. Sirtuin-Dependent Reversible Lysine Acetylation Controls the Activity of Acetyl Coenzyme A Synthetase in Campylobacter jejuni. Jeter VL, Escalante-Semerena JC. J Bacteriol 203 e0033321 (2021)
  57. Modulation of plant acetyl-CoA synthetase activity by post-translational lysine acetylation. Sofeo N, Winkelman DC, Leung K, Nikolau BJ. Front Mol Biosci 10 1117921 (2023)