1n8p Citations

Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine gamma-lyase from yeast and intrafamiliar structure comparison.

Biol Chem 384 373-86 (2003)
Cited: 62 times
EuropePMC logo PMID: 12715888

Abstract

The crystal structure of cystathionine gamma-lyase (CGL) from yeast has been solved by molecular replacement at a resolution of 2.6 A. The molecule consists of 393 amino acid residues and one PLP moiety and is arranged in the crystal as a tetramer with D2 symmetry as in other related enzymes of the Cys-Met-metabolism PLP-dependent family like cystathionine beta-lyase (CBL). A structure comparison with other family members revealed surprising insights into the tuning of enzymatic specificity between the different family members. CGLs from yeast or human are virtually identical at their active sites to cystathionine gamma-synthase (CGS) from E. coli. Both CGLs and bacterial CGSs exhibit gamma-synthase and gamma-lyase activities depending on their position in the metabolic pathway and the available substrates. This group of enzymes has a glutamate (E333 in yeast CGL) which binds to the distal group of cystathionine (CTT) or the amino group of cysteine. Plant CGSs use homoserine phosphate instead of O-succinyl-homoserine as one substrate. This is reflected by a partially different active site structure in plant CGSs. In CGL and CBL the pseudosymmetric substrate must dock at the active site in different orientations, with S in gamma-position (CBL) or in delta-position (CGL). The conserved glutamate steers the substrate as seen in other CGLs. In CBLs this position is occupied by either tyrosine or hydrophobic residues directing binding of CTT such that S is in the in gamma-position. In methionine gamma-lyase a hydrophic patch operates as recognition site for the methyl group of the methionine substrate.

Reviews - 1n8p mentioned but not cited (1)

  1. The widespread role of non-enzymatic reactions in cellular metabolism. Keller MA, Piedrafita G, Ralser M. Curr Opin Biotechnol 34 153-161 (2015)

Articles - 1n8p mentioned but not cited (7)

  1. Protein interface classification by evolutionary analysis. Duarte JM, Srebniak A, Schärer MA, Capitani G. BMC Bioinformatics 13 334 (2012)
  2. Exploration of the active site of Escherichia coli cystathionine γ-synthase. Jaworski AF, Lodha PH, Manders AL, Aitken SM. Protein Sci 21 1662-1671 (2012)
  3. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Matoba Y, Noda M, Yoshida T, Oda K, Ezumi Y, Yasutake C, Izuhara-Kihara H, Danshiitsoodol N, Kumagai T, Sugiyama M. Sci Rep 10 14886 (2020)
  4. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes. Tran TH, Krishnamoorthy K, Begley TP, Ealick SE. Acta Crystallogr D Biol Crystallogr 67 831-838 (2011)
  5. Structural and mechanistic insights into homocysteine degradation by a mutant of methionine γ-lyase based on substrate-assisted catalysis. Sato D, Shiba T, Yunoto S, Furutani K, Fukumoto M, Kudou D, Tamura T, Inagaki K, Harada S. Protein Sci 26 1224-1230 (2017)
  6. YALI0C22088g from Yarrowia lipolytica catalyses the conversion of l-methionine into volatile organic sulfur-containing compounds. Zhao QL, Wang ZL, Yang L, Zhang S, Jia KZ. Microb Biotechnol 14 1462-1471 (2021)
  7. Expression, purification and preliminary crystallographic analysis of O-acetylhomoserine sulfhydrylase from Mycobacterium tuberculosis. Yin J, Garen CR, Bateman K, Yu M, Lyon EZ, Habel J, Kim H, Hung LW, Kim CY, James MN. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 959-963 (2011)


Reviews citing this publication (12)

  1. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Wang R. Physiol Rev 92 791-896 (2012)
  2. Chemical Biology of H2S Signaling through Persulfidation. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem Rev 118 1253-1337 (2018)
  3. PLP-dependent H(2)S biogenesis. Singh S, Banerjee R. Biochim Biophys Acta 1814 1518-1527 (2011)
  4. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites. Ali V, Nozaki T. Clin Microbiol Rev 20 164-187 (2007)
  5. Bacterial methionine biosynthesis. Ferla MP, Patrick WM. Microbiology (Reading) 160 1571-1584 (2014)
  6. The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. Aitken SM, Kirsch JF. Arch Biochem Biophys 433 166-175 (2005)
  7. Importance of the trans-sulfuration pathway in cancer prevention and promotion. Rosado JO, Salvador M, Bonatto D. Mol Cell Biochem 301 1-12 (2007)
  8. Microbial L-methioninase: production, molecular characterization, and therapeutic applications. El-Sayed AS. Appl Microbiol Biotechnol 86 445-467 (2010)
  9. Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Ravilious GE, Jez JM. Nat Prod Rep 29 1138-1152 (2012)
  10. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Perli T, Wronska AK, Ortiz-Merino RA, Pronk JT, Daran JM. Yeast 37 283-304 (2020)
  11. H2S Donors and Their Use in Medicinal Chemistry. Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. Biomolecules 11 1899 (2021)
  12. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review). Li M, Liu Y, Deng Y, Pan L, Fu H, Han X, Li Y, Shi H, Wang T. Oncol Rep 45 68 (2021)

Articles citing this publication (42)

  1. Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H. Biochem J 381 113-123 (2004)
  2. Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH, van-den-Berg S, Deng LW, Moore PK, Karlberg T, Sivaraman J. J Biol Chem 284 3076-3085 (2009)
  3. Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Yin P, Zhao C, Li Z, Mei C, Yao W, Liu Y, Li N, Qi J, Wang L, Shi Y, Qiu S, Fan J, Zha X. Cell Signal 24 1229-1240 (2012)
  4. Identification and functional analysis of the gene encoding methionine-gamma-lyase in Brevibacterium linens. Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P. Appl Environ Microbiol 70 7348-7354 (2004)
  5. Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. Zhu W, Lin A, Banerjee R. Biochemistry 47 6226-6232 (2008)
  6. Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production. Huang S, Chua JH, Yew WS, Sivaraman J, Moore PK, Tan CH, Deng LW. J Mol Biol 396 708-718 (2010)
  7. Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. Lo R, Turner MS, Barry DG, Sreekumar R, Walsh TP, Giffard PM. J Bacteriol 191 1827-1837 (2009)
  8. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi. Marciano D, Santana M, Nowicki C. Mol Biochem Parasitol 185 114-120 (2012)
  9. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida. Fukumoto M, Kudou D, Murano S, Shiba T, Sato D, Tamura T, Harada S, Inagaki K. Biosci Biotechnol Biochem 76 1275-1284 (2012)
  10. Crystallographic and mutational analyses of cystathionine β-synthase in the H2 S-synthetic gene cluster in Lactobacillus plantarum. Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M. Protein Sci 26 763-783 (2017)
  11. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids. Morozova EA, Bazhulina NP, Anufrieva NV, Mamaeva DV, Tkachev YV, Streltsov SA, Timofeev VP, Faleev NG, Demidkina TV. Biochemistry (Mosc) 75 1272-1280 (2010)
  12. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Song H, Xu R, Guo Z. Chembiochem 16 100-109 (2015)
  13. PLP undergoes conformational changes during the course of an enzymatic reaction. Ngo HP, Cerqueira NM, Kim JK, Hong MK, Fernandes PA, Ramos MJ, Kang LW. Acta Crystallogr D Biol Crystallogr 70 596-606 (2014)
  14. Interconversion of a pair of active-site residues in Escherichia coli cystathionine gamma-synthase, E. coli cystathionine beta-lyase, and Saccharomyces cerevisiae cystathionine gamma-lyase and development of tools for the investigation of their mechanisms and reaction specificity. Farsi A, Lodha PH, Skanes JE, Los H, Kalidindi N, Aitken SM. Biochem Cell Biol 87 445-457 (2009)
  15. Characterization of site-directed mutants of residues R58, R59, D116, W340 and R372 in the active site of E. coli cystathionine beta-lyase. Lodha PH, Jaworski AF, Aitken SM. Protein Sci 19 383-391 (2010)
  16. A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity. Hopwood EM, Ahmed D, Aitken SM. Biochim Biophys Acta 1844 465-472 (2014)
  17. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection. Moreira LM, Soares MR, Facincani AP, Ferreira CB, Ferreira RM, Ferro MIT, Gozzo FC, Felestrino ÉB, Assis RAB, Garcia CCM, Setubal JC, Ferro JA, de Oliveira JCF. BMC Microbiol 17 155 (2017)
  18. Identification of methionine γ-lyase in genomes of some pathogenic bacteria. Revtovich SV, Morozova EA, Anufrieva NV, Kotlov MI, Belyi YF, Demidkina TV. Dokl Biochem Biophys 445 187-193 (2012)
  19. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase. Astegno A, Allegrini A, Piccoli S, Giorgetti A, Dominici P. Proteins 83 78-90 (2015)
  20. Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Cordente AG, Borneman AR, Bartel C, Capone D, Solomon M, Roach M, Curtin CD. Appl Environ Microbiol 85 e02684-18 (2019)
  21. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site. Yan W, Stone E, Zhang YJ. Biochemistry 56 876-885 (2017)
  22. Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates. Revtovich SV, Morozova EA, Khurs EN, Zakomirdina LN, Nikulin AD, Demidkina TV, Khomutov RM. Biochemistry (Mosc) 76 564-570 (2011)
  23. Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme. Morozova EA, Revtovich SV, Anufrieva NV, Kulikova VV, Nikulin AD, Demidkina TV. Acta Crystallogr D Biol Crystallogr 70 3034-3042 (2014)
  24. Cystathionine γ-lyase, an enzyme related to the reverse transsulfuration pathway, is functional in Leishmania spp. Giordana L, Mantilla BS, Santana M, Silber AM, Nowicki C. J Eukaryot Microbiol 61 204-213 (2014)
  25. Exploration of structure-function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-specific substitutions. Manders AL, Jaworski AF, Ahmed M, Aitken SM. Biochim Biophys Acta 1834 1044-1053 (2013)
  26. Functional Characterization and Structure-Guided Mutational Analysis of the Transsulfuration Enzyme Cystathionine γ-Lyase from Toxoplasma gondii. Maresi E, Janson G, Fruncillo S, Paiardini A, Vallone R, Dominici P, Astegno A. Int J Mol Sci 19 E2111 (2018)
  27. Gene cloning, characterization, and cytotoxic activity of methionine γ-lyase from Clostridium novyi. Kulikova VV, Morozova EA, Revtovich SV, Kotlov MI, Anufrieva NV, Bazhulina NP, Raboni S, Faggiano S, Gabellieri E, Cioni P, Belyi YF, Mozzarelli A, Demidkina TV. IUBMB Life 69 668-676 (2017)
  28. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Le Corre L, Padovani D. Sci Rep 13 7287 (2023)
  29. Molecular characterization of Mycobacterium tuberculosis cystathionine gamma synthase--apo- and holoforms. Saha B, Mukherjee S, Das AK. Int J Biol Macromol 44 385-392 (2009)
  30. Structure of the cystathionine γ-synthase MetB from Mycobacterium ulcerans. Clifton MC, Abendroth J, Edwards TE, Leibly DJ, Gillespie AK, Ferrell M, Dieterich SH, Exley I, Staker BL, Myler PJ, Van Voorhis WC, Stewart LJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1154-1158 (2011)
  31. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. J Biol Chem 296 100797 (2021)
  32. Discovery and characterization of small molecule inhibitors of cystathionine gamma-synthase with in planta activity. Bloch I, Haviv H, Rapoport I, Cohen E, Shushan RSB, Dotan N, Sher I, Hacham Y, Amir R, Gal M. Plant Biotechnol J 19 1785-1797 (2021)
  33. Global Survey, Expressions and Association Analysis of CBLL Genes in Peanut. Ren W, Zeng Z, Wang S, Zhang J, Fang J, Wan L. Front Genet 13 821163 (2022)
  34. Mechanism of Growth Regulation of Yeast Involving Hydrogen Sulfide From S-Propargyl-Cysteine Catalyzed by Cystathionine-γ-Lyase. Gu Z, Sun Y, Wu F, Wu X. Front Microbiol 12 679563 (2021)
  35. Structural basis of the inhibition of cystathionine γ-lyase from Toxoplasma gondii by propargylglycine and cysteine. Fernández-Rodríguez C, Conter C, Oyenarte I, Favretto F, Quintana I, Martinez-Chantar ML, Astegno A, Martínez-Cruz LA. Protein Sci 32 e4619 (2023)
  36. Citrobacter freundii Methionine γ-Lyase: The Role of Serine 339 in the Catalysis of γ- and β-Elimination Reactions. Anufrieva NV, Morozova EA, Revtovich SV, Bazhulina NP, Timofeev VP, Tkachev YV, Faleev NG, Nikulin AD, Demidkina TV. Acta Naturae 14 50-61 (2022)
  37. Exploration of the six tryptophan residues of Escherichia coli cystathionine β-lyase as probes of enzyme conformational change. Jaworski AF, Aitken SM. Arch Biochem Biophys 538 138-144 (2013)
  38. Hypoxia increases persulfide and polysulfide formation by AMP kinase dependent cystathionine gamma lyase phosphorylation. Alam S, Pardue S, Shen X, Glawe JD, Yagi T, Bhuiyan MAN, Patel RP, Dominic PS, Virk CS, Bhuiyan MS, Orr AW, Petit C, Kolluru GK, Kevil CG. Redox Biol 68 102949 (2023)
  39. Identification and Characterization of an O-Succinyl-L-Homoserine Sulfhydrylase From Thioalkalivibrio sulfidiphilus. Zhu WY, Niu K, Liu P, Fan YH, Liu ZQ, Zheng YG. Front Chem 9 672414 (2021)
  40. Naphthyl-Substituted Indole and Pyrrole Carboxylic Acids as Effective Antibiotic Potentiators-Inhibitors of Bacterial Cystathionine γ-Lyase. Kuzovlev AS, Zybalov MD, Golovin AV, Gureev MA, Kasatkina MA, Biryukov MV, Belik AR, Silonov SA, Yunin MA, Zigangirova NA, Reshetnikov VV, Isakova YE, Porozov YB, Ivanov RA. Int J Mol Sci 24 16331 (2023)
  41. Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast. Schlossarek D, Luzarowski M, Sokołowska EM, Thirumalaikumar VP, Dengler L, Willmitzer L, Ewald JC, Skirycz A. Cell Mol Life Sci 79 550 (2022)
  42. The Relationship between Elevated Homocysteine and Metabolic Syndrome in a Community-Dwelling Middle-Aged and Elderly Population in Taiwan. Shih YL, Shih CC, Huang TC, Chen JY. Biomedicines 11 378 (2023)