1lru Citations

The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents.

J Mol Biol 320 951-62 (2002)
Related entries: 1lqw, 1lqy, 1lry

Cited: 70 times
EuropePMC logo PMID: 12126617

Abstract

Bacterial peptide deformylase (PDF) belongs to a sub-family of metalloproteases that catalyse the removal of the N-terminal formyl group from newly synthesised proteins. PDF is essential in prokaryotes and conserved throughout the eubacteria. It is therefore considered an attractive target for developing new antibacterial agents. Here, we report the crystal structures of four bacterial deformylases, free or bound to the naturally occurring antibiotic actinonin, including two from the major bacterial pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The overall tertiary structure is essentially conserved but shows significant differences, namely at the C terminus, which are directly related to the deformylase type (i.e. I or II) they belong to. The geometry around the catalytic metal ion exhibits a high level of similarity within the different enzymes, as does the binding mode of actinonin to the various deformylases. However, some significant structural differences are found in the vicinity of the active site, highlighting the structural and molecular requirements for the design of a deformylase inhibitor active against a broad spectrum of bacterial strains.

Articles - 1lru mentioned but not cited (6)

  1. Peptide deformylase inhibitors as antibacterial agents: identification of VRC3375, a proline-3-alkylsuccinyl hydroxamate derivative, by using an integrated combinatorial and medicinal chemistry approach. Chen D, Hackbarth C, Ni ZJ, Wu C, Wang W, Jain R, He Y, Bracken K, Weidmann B, Patel DV, Trias J, White RJ, Yuan Z. Antimicrob Agents Chemother 48 250-261 (2004)
  2. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals. Snow Setzer M, Sharifi-Rad J, Setzer WN. Antibiotics (Basel) 5 E30 (2016)
  3. Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets. Shamsara J. Int J Med Chem 2018 3829307 (2018)
  4. Total synthesis of (±)-fumimycin and analogues for biological evaluation as peptide deformylase inhibitors. Zaghouani M, Bögeholz LAK, Mercier E, Wintermeyer W, Roche SP. Tetrahedron 75 3216-3230 (2019)
  5. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction. Zhang H, Saravanan KM, Zhang JZH. Molecules 28 4691 (2023)
  6. Validation of Deep Learning-Based DFCNN in Extremely Large-Scale Virtual Screening and Application in Trypsin I Protease Inhibitor Discovery. Zhang H, Lin X, Wei Y, Zhang H, Liao L, Wu H, Pan Y, Wu X. Front Mol Biosci 9 872086 (2022)


Reviews citing this publication (12)

  1. The design of inhibitors for medicinally relevant metalloproteins. Jacobsen FE, Lewis JA, Cohen SM. ChemMedChem 2 152-171 (2007)
  2. The genesis of high-throughput structure-based drug discovery using protein crystallography. Kuhn P, Wilson K, Patch MG, Stevens RC. Curr Opin Chem Biol 6 704-710 (2002)
  3. Impact of the N-terminal amino acid on targeted protein degradation. Meinnel T, Serero A, Giglione C. Biol Chem 387 839-851 (2006)
  4. Investigational antimicrobial agents of 2013. Pucci MJ, Bush K. Clin Microbiol Rev 26 792-821 (2013)
  5. Conformational change in substrate binding, catalysis and product release: an open and shut case? Gutteridge A, Thornton J. FEBS Lett 567 67-73 (2004)
  6. Cotranslational processing mechanisms: towards a dynamic 3D model. Giglione C, Fieulaine S, Meinnel T. Trends Biochem Sci 34 417-426 (2009)
  7. New antibiotics from Nature's chemical inventory. Wencewicz TA. Bioorg Med Chem 24 6227-6252 (2016)
  8. The evolution of peptide deformylase as a target: contribution of biochemistry, genetics and genomics. Yuan Z, White RJ. Biochem Pharmacol 71 1042-1047 (2006)
  9. Metalloenzyme inhibitors for the treatment of Gram-negative bacterial infections: a patent review (2009-2012). Supuran CT, Carta F, Scozzafava A. Expert Opin Ther Pat 23 777-788 (2013)
  10. Therapeutic potential of peptide deformylase inhibitors. Chen D, Yuan Z. Expert Opin Investig Drugs 14 1107-1116 (2005)
  11. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery. Sharma A, Khuller GK, Sharma S. Expert Opin Ther Targets 13 753-765 (2009)
  12. Structural proteomics: the potential of high-throughput structure determination. Schmid MB. Trends Microbiol 10 S27-31 (2002)

Articles citing this publication (52)

  1. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolić S, Maier T, Schaffitzel C, Wiedmann B, Bukau B, Ban N. Nature 452 108-111 (2008)
  2. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, Sirotnak FM, Scheinberg DA. J Clin Invest 114 1107-1116 (2004)
  3. Peptide deformylase is a potential target for anti-Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. Cai J, Han C, Hu T, Zhang J, Wu D, Wang F, Liu Y, Ding J, Chen K, Yue J, Shen X, Jiang H. Protein Sci 15 2071-2081 (2006)
  4. Comprehensive structural classification of ligand-binding motifs in proteins. Kinjo AR, Nakamura H. Structure 17 234-246 (2009)
  5. A new human peptide deformylase inhibitable by actinonin. Lee MD, Antczak C, Li Y, Sirotnak FM, Bornmann WG, Scheinberg DA. Biochem Biophys Res Commun 312 309-315 (2003)
  6. Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Nguyen KT, Wu JC, Boylan JA, Gherardini FC, Pei D. Arch Biochem Biophys 468 217-225 (2007)
  7. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Smith KJ, Petit CM, Aubart K, Smyth M, McManus E, Jones J, Fosberry A, Lewis C, Lonetto M, Christensen SB. Protein Sci 12 349-360 (2003)
  8. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. Kreusch A, Spraggon G, Lee CC, Klock H, McMullan D, Ng K, Shin T, Vincent J, Warner I, Ericson C, Lesley SA. J Mol Biol 330 309-321 (2003)
  9. Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. Escobar-Alvarez S, Goldgur Y, Yang G, Ouerfelli O, Li Y, Scheinberg DA. J Mol Biol 387 1211-1228 (2009)
  10. The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms. Fieulaine S, Juillan-Binard C, Serero A, Dardel F, Giglione C, Meinnel T, Ferrer JL. J Biol Chem 280 42315-42324 (2005)
  11. Structure-activity relationship analysis of the peptide deformylase inhibitor 5-bromo-1H-indole-3-acetohydroxamic acid. Petit S, Duroc Y, Larue V, Giglione C, Léon C, Soulama C, Denis A, Dardel F, Meinnel T, Artaud I. ChemMedChem 4 261-275 (2009)
  12. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. Fieulaine S, Boularot A, Artaud I, Desmadril M, Dardel F, Meinnel T, Giglione C. PLoS Biol 9 e1001066 (2011)
  13. Structure and function of a cyanophage-encoded peptide deformylase. Frank JA, Lorimer D, Youle M, Witte P, Craig T, Abendroth J, Rohwer F, Edwards RA, Segall AM, Burgin AB. ISME J 7 1150-1160 (2013)
  14. Unique structural characteristics of peptide deformylase from pathogenic bacterium Leptospira interrogans. Zhou Z, Song X, Li Y, Gong W. J Mol Biol 339 207-215 (2004)
  15. Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Pichota A, Duraiswamy J, Yin Z, Keller TH, Alam J, Liung S, Lee G, Ding M, Wang G, Chan WL, Schreiber M, Ma I, Beer D, Ngew X, Mukherjee K, Nanjundappa M, Teo JW, Thayalan P, Yap A, Dick T, Meng W, Xu M, Koehn J, Pan SH, Clark K, Xie X, Shoen C, Cynamon M. Bioorg Med Chem Lett 18 6568-6572 (2008)
  16. Identification of protein fold topology shared between different folds inhibited by natural products. McArdle BM, Quinn RJ. Chembiochem 8 788-798 (2007)
  17. Structure-activity relationships of the peptide deformylase inhibitor BB-3497: modification of the methylene spacer and the P1' side chain. Davies SJ, Ayscough AP, Beckett RP, Bragg RA, Clements JM, Doel S, Grew C, Launchbury SB, Perkins GM, Pratt LM, Smith HK, Spavold ZM, Thomas SW, Todd RS, Whittaker M. Bioorg Med Chem Lett 13 2709-2713 (2003)
  18. Drug forecast - the peptide deformylase inhibitors as antibacterial agents. Guay DR. Ther Clin Risk Manag 3 513-525 (2007)
  19. Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin, a naturally occurring antibacterial agent. Yoon HJ, Kim HL, Lee SK, Kim HW, Kim HW, Lee JY, Mikami B, Suh SW. Proteins 57 639-642 (2004)
  20. Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Stojko J, Fieulaine S, Petiot-Bécard S, Van Dorsselaer A, Meinnel T, Giglione C, Cianférani S. Analyst 140 7234-7245 (2015)
  21. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis. Bao X, Pachikara ND, Oey CB, Balakrishnan A, Westblade LF, Tan M, Chase T, Nickels BE, Fan H. Microbiology (Reading) 157 2569-2581 (2011)
  22. Application of an inducible system to engineer unmarked conditional mutants of essential genes of Pseudomonas aeruginosa. Morita Y, Narita S, Tomida J, Tokuda H, Kawamura Y. J Microbiol Methods 82 205-213 (2010)
  23. Codon optimization enhances protein expression of human peptide deformylase in E. coli. Han JH, Choi YS, Kim WJ, Jeon YH, Lee SK, Lee BJ, Ryu KS. Protein Expr Purif 70 224-230 (2010)
  24. Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents. Calí P, Naerum L, Mukhija S, Hjelmencrantz A. Bioorg Med Chem Lett 14 5997-6000 (2004)
  25. Structure--activity relationships of the peptide deformylase inhibitor BB-3497: modification of the P2' and P3' side chains. Davies SJ, Ayscough AP, Beckett RP, Clements JM, Doel S, Pratt LM, Spavold ZM, Thomas SW, Whittaker M. Bioorg Med Chem Lett 13 2715-2718 (2003)
  26. Synthesis and preliminary antibacterial evaluation of 2-butyl succinate-based hydroxamate derivatives containing isoxazole rings. Zhang D, Jia J, Meng L, Xu W, Tang L, Wang J. Arch Pharm Res 33 831-842 (2010)
  27. Alpha-substituted hydroxamic acids as novel bacterial deformylase inhibitor-based antibacterial agents. Jain R, Sundram A, Lopez S, Neckermann G, Wu C, Hackbarth C, Chen D, Wang W, Ryder NS, Weidmann B, Patel D, Trias J, White R, Yuan Z. Bioorg Med Chem Lett 13 4223-4228 (2003)
  28. Microbiome changes in healthy volunteers treated with GSK1322322, a novel antibiotic targeting bacterial peptide deformylase. Arat S, Spivak A, Van Horn S, Thomas E, Traini C, Sathe G, Livi GP, Ingraham K, Jones L, Aubart K, Holmes DJ, Naderer O, Brown JR. Antimicrob Agents Chemother 59 1182-1192 (2015)
  29. Identification of regions involved in enzymatic stability of peptide deformylase of Mycobacterium tuberculosis. Saxena R, Chakraborti PK. J Bacteriol 187 8216-8220 (2005)
  30. Novel conformational states of peptide deformylase from pathogenic bacterium Leptospira interrogans: implications for population shift. Zhou Z, Song X, Gong W. J Biol Chem 280 42391-42396 (2005)
  31. The carboxy-terminal end of the peptide deformylase from Mycobacterium tuberculosis is indispensable for its enzymatic activity. Saxena R, Chakraborti PK. Biochem Biophys Res Commun 332 418-425 (2005)
  32. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase. Amero CD, Byerly DW, McElroy CA, Simmons A, Foster MP. Biochemistry 48 7595-7607 (2009)
  33. New peptide deformylase inhibitors and cooperative interaction: a combination to improve antibacterial activity. Goemaere E, Melet A, Larue V, Lieutaud A, Alves de Sousa R, Chevalier J, Yimga-Djapa L, Giglione C, Huguet F, Alimi M, Meinnel T, Dardel F, Artaud I, Pagès JM. J Antimicrob Chemother 67 1392-1400 (2012)
  34. Synthesis, Characterization of Chitosan-Aluminum Oxide Nanocomposite for Green Synthesis of Annulated Imidazopyrazol Thione Derivatives. Abdel-Naby AS, Nabil S, Aldulaijan S, Ababutain IM, Alghamdi AI, Almubayedh S, Khalil KD. Polymers (Basel) 13 1160 (2021)
  35. A unique peptide deformylase platform to rationally design and challenge novel active compounds. Fieulaine S, Alves de Sousa R, Maigre L, Hamiche K, Alimi M, Bolla JM, Taleb A, Denis A, Pagès JM, Artaud I, Meinnel T, Giglione C. Sci Rep 6 35429 (2016)
  36. Discovery of Potential Plant-Derived Peptide Deformylase (PDF) Inhibitors for Multidrug-Resistant Bacteria Using Computational Studies. Rampogu S, Zeb A, Baek A, Park C, Son M, Lee KW. J Clin Med 7 E563 (2018)
  37. Solvent-assisted slow conversion of a dithiazole derivative produces a competitive inhibitor of peptide deformylase. Berg AK, Yu Q, Qian SY, Haldar MK, Srivastava DK. Biochim Biophys Acta 1804 704-713 (2010)
  38. Targeting Endothelial Barrier Dysfunction Caused by Circulating Bacterial and Mitochondrial N-Formyl Peptides With Deformylase. Martinez-Quinones P, Komic A, McCarthy CG, Webb RC, Wenceslau CF. Front Immunol 10 1270 (2019)
  39. Phylogenomic and biochemical characterization of three Legionella pneumophila polypeptide deformylases. Huang J, Van Aller GS, Taylor AN, Kerrigan JJ, Liu WS, Trulli JM, Lai Z, Holmes D, Aubart KM, Brown JR, Zalacain M. J Bacteriol 188 5249-5257 (2006)
  40. Structure analysis of peptide deformylase from Bacillus cereus. Moon JH, Park JK, Kim EE. Proteins 61 217-220 (2005)
  41. antibacTR: dynamic antibacterial-drug-target ranking integrating comparative genomics, structural analysis and experimental annotation. Panjkovich A, Gibert I, Daura X. BMC Genomics 15 36 (2014)
  42. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin. Larue V, Seijo B, Tisne C, Dardel F. Biomol NMR Assign 3 153-155 (2009)
  43. Characterization of the Actinonin Biosynthetic Gene Cluster. Wolf F, Leipoldt F, Kulik A, Wibberg D, Kalinowski J, Kaysser L. Chembiochem (2018)
  44. Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets. Wang Q, Zhang D, Wang J, Cai Z, Xu W. Biophys Chem 122 43-49 (2006)
  45. Identification of crucial amino acids of bacterial Peptide deformylases affecting enzymatic activity in response to oxidative stress. Kumar S, Kanudia P, Karthikeyan S, Chakraborti PK. J Bacteriol 196 90-99 (2014)
  46. Peptide deformylase inhibitors with retro-amide scaffold: synthesis and structure-activity relationships. Lee SK, Choi KH, Lee SJ, Suh SW, Kim BM, Lee BJ. Bioorg Med Chem Lett 20 4317-4319 (2010)
  47. Structures of Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors. Lee SJ, Lee SJ, Lee SK, Yoon HJ, Lee HH, Kim KK, Lee BJ, Lee BI, Suh SW. Acta Crystallogr D Biol Crystallogr 68 784-793 (2012)
  48. Congress The situation on antimicrobial agents and chemotherapy in 2002: highlights of the 42nd ICAAC. Giglione C, Meinnel T. Expert Opin Ther Targets 6 691-697 (2002)
  49. Characterization of peptide deformylase homologues from Staphylococcus epidermidis. Lin P, Hu T, Hu J, Yu W, Han C, Zhang J, Qin G, Yu K, Götz F, Shen X, Jiang H, Qu D. Microbiology (Reading) 156 3194-3202 (2010)
  50. Characterization of peptide deformylase2 from B. cereus. Park JK, Kim KH, Moon JH, Kim EE. J Biochem Mol Biol 40 1050-1057 (2007)
  51. Prediction of the binding modes between BB-83698 and peptide deformylase from Bacillus stearothermophilus by docking and molecular dynamics simulation. Wang Q, Wang J, Cai Z, Xu W. Biophys Chem 134 178-184 (2008)
  52. Congress 15th European Congress of Clinical Microbiology and Infectious Diseases, Copenhagen, Denmark, 2-5 April 2005. Abstracts. Clin Microbiol Infect 11 Suppl 2 1-744 (2005)