1lfg Citations

Structure of human diferric lactoferrin refined at 2.2 A resolution.

Acta Crystallogr D Biol Crystallogr 51 629-46 (1995)
Cited: 70 times
EuropePMC logo PMID: 15299793

Abstract

The three-dimensional structure of the diferric form of human lactoferrin has been refined at 2.2 A resolution, using synchrotron data combined with a lower resolution (3.2 A) diffractometer data set. Following restrained least-squares refinement and model rebuilding the final model comprises 5330 protein atoms (691 residues), 2Fe(3+) and 2CO(3)(2-) ions, 469 solvent molecules and 98 carbohydrate atoms (eight sugar residues). Root-mean-square deviations from standard geometry are 0.015 A for bond lengths and 0.038 A for angle (1-3) distances, and the final crystallographic R-factor is 0.179 for all 39 113 reflections in the resolution range 8.0-2.2 A. A close structural similarity is seen between the two lobes of the molecule, with differences mainly in loops and turns. The two binding sites are extremely similar, the only apparent differences being a slightly more asymmetric bidentate binding of the carbonate ion to the metal, and a slightly longer Fe-O bond to one of the Tyr ligands, in the N-lobe site relative to the C-lobe site. Distinct differences are seen in the interactions made by two cationic groups, Arg210 and Lys546, behind the iron site, and these may influence the stability of the two metal sites. Analysis of interdomain and interlobe interactions shows that these are few in number which is consistent with the known flexibility of the molecule with respect to domain and lobe movements. Internal water molecules are found in discrete sites and in two large clusters (in the two interdomain clefts) and one tightly bound water molecule is present 3.8 A from the Fe atom in each lobe. The carbohydrate is weakly defined and has been modelled to a limited extent; two sugar residues of the N-lobe glycan and six of the C-lobe glycan. Only one direct protein-carbohydrate contact can be found.

Reviews - 1lfg mentioned but not cited (4)

  1. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Spicer CD, Jumeaux C, Gupta B, Stevens MM. Chem Soc Rev 47 3574-3620 (2018)
  2. Manganese and microbial pathogenesis: sequestration by the Mammalian immune system and utilization by microorganisms. Brophy MB, Nolan EM. ACS Chem. Biol. 10 641-651 (2015)
  3. Structural Basis for Evasion of Nutritional Immunity by the Pathogenic Neisseriae. Yadav R, Noinaj N, Ostan N, Moraes T, Stoudenmire J, Maurakis S, Cornelissen CN. Front Microbiol 10 2981 (2019)
  4. The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments. Cole GB, Bateman TJ, Moraes TF. J Biol Chem 296 100147 (2021)

Articles - 1lfg mentioned but not cited (40)

  1. Macrocycles: lessons from the distant past, recent developments, and future directions. Yudin AK. Chem Sci 6 30-49 (2015)
  2. Normal-modes-based prediction of protein conformational changes guided by distance constraints. Zheng W, Brooks BR. Biophys J 88 3109-3117 (2005)
  3. Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations. Jolley CC, Wells SA, Fromme P, Thorpe MF. Biophys. J. 94 1613-1621 (2008)
  4. Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization. Zheng W. Biophys J 100 478-488 (2011)
  5. A unification of the elastic network model and the Gaussian network model for optimal description of protein conformational motions and fluctuations. Zheng W. Biophys J 94 3853-3857 (2008)
  6. Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes. Zheng W, Brooks BR. Biophys J 90 4327-4336 (2006)
  7. Molecular Mechanisms Behind Anti SARS-CoV-2 Action of Lactoferrin. Miotto M, Di Rienzo L, Bò L, Boffi A, Ruocco G, Milanetti E. Front Mol Biosci 8 607443 (2021)
  8. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K. Biophys. J. 92 4088-4096 (2007)
  9. Computing ensembles of transitions from stable states: Dynamic importance sampling. Perilla JR, Beckstein O, Denning EJ, Woolf TB. J Comput Chem 32 196-209 (2011)
  10. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell. Zheng W, Tekpinar M. Biophys. J. 101 2981-2991 (2011)
  11. Confidence intervals for fitting of atomic models into low-resolution densities. Volkmann N. Acta Crystallogr. D Biol. Crystallogr. 65 679-689 (2009)
  12. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes. Bray JK, Weiss DR, Levitt M. Biophys J 101 2966-2969 (2011)
  13. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP. Int J Pept 2013 390230 (2013)
  14. Circular dichroism spectroscopy has intrinsic limitations for protein secondary structure analysis. Khrapunov S. Anal Biochem 389 174-176 (2009)
  15. Fitting two- and three-site binding models to isothermal titration calorimetric data. Brautigam CA. Methods 76 124-136 (2015)
  16. KOSMOS: a universal morph server for nucleic acids, proteins and their complexes. Seo S, Kim MK. Nucleic Acids Res. 40 W531-6 (2012)
  17. Structural insight into the lactoferrin receptors from pathogenic Neisseria. Noinaj N, Cornelissen CN, Buchanan SK. J. Struct. Biol. 184 83-92 (2013)
  18. Normal Mode Flexible Fitting of High-Resolution Structures of Biological Molecules Toward SAXS Data. Gorba C, Tama F. Bioinform Biol Insights 4 43-54 (2010)
  19. A mass weighted chemical elastic network model elucidates closed form domain motions in proteins. Kim MH, Seo S, Jeong JI, Kim BJ, Liu WK, Lim BS, Choi JB, Kim MK. Protein Sci 22 605-613 (2013)
  20. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Brooks CL, Arutyunova E, Lemieux MJ. Acta Crystallogr F Struct Biol Commun 70 1312-1317 (2014)
  21. Diversity of function-related conformational changes in proteins: coordinate uncertainty, fragment rigidity, and stability. Rashin AA, Rashin AH, Jernigan RL. Biochemistry 49 5683-5704 (2010)
  22. C-lobe of lactoferrin: the whole story of the half-molecule. Sharma S, Sinha M, Kaushik S, Kaur P, Singh TP. Biochem Res Int 2013 271641 (2013)
  23. Protein flexibility: coordinate uncertainties and interpretation of structural differences. Rashin AA, Rashin AH, Jernigan RL. Acta Crystallogr. D Biol. Crystallogr. 65 1140-1161 (2009)
  24. Antimicrobial Functions of Lactoferrin Promote Genetic Conflicts in Ancient Primates and Modern Humans. Barber MF, Kronenberg Z, Yandell M, Elde NC. PLoS Genet. 12 e1006063 (2016)
  25. Multiscale Factorization Method for Simulating Mesoscopic Systems with Atomic Precision. Abi Mansour A, Ortoleva PJ. J Chem Theory Comput 10 518-523 (2014)
  26. Discovering free energy basins for macromolecular systems via guided multiscale simulation. Sereda YV, Singharoy AB, Jarrold MF, Ortoleva PJ. J Phys Chem B 116 8534-8544 (2012)
  27. The immune properties of Manduca sexta transferrin. Brummett LM, Kanost MR, Gorman MJ. Insect Biochem. Mol. Biol. 81 1-9 (2017)
  28. A method for finding candidate conformations for molecular replacement using relative rotation between domains of a known structure. Jeong JI, Lattman EE, Chirikjian GS. Acta Crystallogr. D Biol. Crystallogr. 62 398-409 (2006)
  29. Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells. Persson BD, Lenman A, Frängsmyr L, Schmid M, Ahlm C, Plückthun A, Jenssen H, Arnberg N. J Virol 94 (2020)
  30. Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics. Kovacs JA, Galkin VE, Wriggers W. BMC Struct. Biol. 18 12 (2018)
  31. Flexible Fitting of Atomic Models into Cryo-EM Density Maps Guided by Helix Correspondences. Dou H, Burrows DW, Baker ML, Ju T. Biophys. J. 112 2479-2493 (2017)
  32. Lactoferrin Inhibition of the Complex Formation between ACE2 Receptor and SARS CoV-2 Recognition Binding Domain. Piacentini R, Centi L, Miotto M, Milanetti E, Di Rienzo L, Pitea M, Piazza P, Ruocco G, Boffi A, Parisi G. Int J Mol Sci 23 5436 (2022)
  33. Lactoferrin is a natural inhibitor of plasminogen activation. Zwirzitz A, Reiter M, Skrabana R, Ohradanova-Repic A, Majdic O, Gutekova M, Cehlar O, Petrovčíková E, Kutejova E, Stanek G, Stockinger H, Leksa V. J. Biol. Chem. 293 8600-8613 (2018)
  34. Structure and domain dynamics of human lactoferrin in solution and the influence of Fe(III)-ion ligand binding. Sill C, Biehl R, Hoffmann B, Radulescu A, Appavou MS, Farago B, Merkel R, Richter D. BMC Biophys 9 7 (2016)
  35. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe. Hayashi K, Longenecker KL, Liu YL, Faust B, Prashar A, Hampl J, Stoll V, Vivona S. Sci Rep 11 566 (2021)
  36. Identification of Blood Transport Proteins to Carry Temoporfin: A Domino Approach from Virtual Screening to Synthesis and In Vitro PDT Testing. Marconi A, Giugliano G, Di Giosia M, Marforio TD, Trivini M, Turrini E, Fimognari C, Zerbetto F, Mattioli EJ, Calvaresi M. Pharmaceutics 15 919 (2023)
  37. Low-Frequency Harmonic Perturbations Drive Protein Conformational Changes. Scaramozzino D, Piana G, Lacidogna G, Carpinteri A. Int J Mol Sci 22 10501 (2021)
  38. Modeling of protein conformational changes with Rosetta guided by limited experimental data. Sala D, Del Alamo D, Mchaourab HS, Meiler J. Structure 30 1157-1168.e3 (2022)
  39. The unusual properties of lactoferrin during its nascent phase. Notari S, Gambardella G, Vincenzoni F, Desiderio C, Castagnola M, Bocedi A, Ricci G. Sci Rep 13 14113 (2023)
  40. Theoretical framework for analyzing structural compliance properties of proteins. Arikawa K. Biophys Physicobiol 15 58-74 (2018)


Reviews citing this publication (12)

  1. Lactoferrin a multiple bioactive protein: an overview. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Biochim. Biophys. Acta 1820 226-236 (2012)
  2. Lactoferrin and transferrin: functional variations on a common structural framework. Baker EN, Baker HM, Kidd RD. Biochem. Cell Biol. 80 27-34 (2002)
  3. LF immunomodulatory strategies: mastering bacterial endotoxin. Latorre D, Berlutti F, Valenti P, Gessani S, Puddu P. Biochem. Cell Biol. 90 269-278 (2012)
  4. Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Latorre D, Puddu P, Valenti P, Gessani S. Toxins (Basel) 2 54-68 (2010)
  5. [Lactoferrin: a multifunctional protein]. Pierce A, Legrand D, Mazurier J. Med Sci (Paris) 25 361-369 (2009)
  6. Immunoregulatory role of lactoferrin-lipopolysaccharide interactions. Puddu P, Latorre D, Valenti P, Gessani S. Biometals 23 387-397 (2010)
  7. Studying Lactoferrin N-Glycosylation. Karav S, German JB, Rouquié C, Le Parc A, Barile D. Int J Mol Sci 18 (2017)
  8. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Biomolecules 10 (2020)
  9. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Cancers (Basel) 12 E3806 (2020)
  10. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. Front Microbiol 9 1351 (2018)
  11. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Gruden Š, Poklar Ulrih N. Int J Mol Sci 22 11264 (2021)
  12. Lactoferrin in Aseptic and Septic Inflammation. Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Molecules 24 (2019)

Articles citing this publication (14)

  1. Characterization of human lactoferrin produced in the baculovirus expression system. Salmon V, Legrand D, Georges B, Slomianny MC, Coddeville B, Spik G. Protein Expr. Purif. 9 203-210 (1997)
  2. Three-dimensional structure of mare diferric lactoferrin at 2.6 A resolution. Sharma AK, Paramasivam M, Srinivasan A, Yadav MP, Singh TP. J. Mol. Biol. 289 303-317 (1999)
  3. Production of human lactoferrin in transgenic tobacco plants. Salmon V, Legrand D, Slomianny MC, el Yazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M, Mérot B. Protein Expr. Purif. 13 127-135 (1998)
  4. Crystal structure of a proteolytically generated functional monoferric C-lobe of bovine lactoferrin at 1.9A resolution. Sharma S, Jasti J, Kumar J, Mohanty AK, Singh TP. J. Mol. Biol. 331 485-496 (2003)
  5. Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Huang J, Kailemia MJ, Goonatilleke E, Parker EA, Hong Q, Sabia R, Smilowitz JT, German JB, Lebrilla CB. Anal Bioanal Chem 409 589-606 (2017)
  6. Constitutive expression of human lactoferrin and its N-lobe in rice plants to confer disease resistance. Takase K, Hagiwara K, Onodera H, Nishizawa Y, Ugaki M, Omura T, Numata S, Akutsu K, Kumura H, Shimazaki K. Biochem. Cell Biol. 83 239-249 (2005)
  7. Structure of iron saturated C-lobe of bovine lactoferrin at pH 6.8 indicates a weakening of iron coordination. Rastogi N, Singh A, Singh PK, Tyagi TK, Pandey S, Shin K, Kaur P, Sharma S, Singh TP. Proteins 84 591-599 (2016)
  8. Structure of the iron-free true C-terminal half of bovine lactoferrin produced by tryptic digestion and its functional significance in the gut. Rastogi N, Singh A, Pandey SN, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP. FEBS J. 281 2871-2882 (2014)
  9. Electrostatic effects control the stability and iron release kinetics of ovotransferrin. Kumar S, Sharma D, Kumar R, Kumar R. J. Biol. Inorg. Chem. 19 1009-1024 (2014)
  10. Evolutionary analysis of the transferrin gene in Antarctic Notothenioidei: A history of adaptive evolution and functional divergence. Trinchella F, Parisi E, Scudiero R. Mar Genomics 1 95-101 (2008)
  11. Flexibility of the coordination geometry at the N-site of Cu(II)2 human serum-transferrin induced by the different orientations of Arg124. Hata T, Shibata Y, Okano M, Kodera A, Ueda M, Iwamoto H, Tomida H, Iwamoto H, Hirose J. Biol Pharm Bull 38 358-364 (2015)
  12. An insight into the ribonucleolytic and antiangiogenic activity of buffalo lactoferrin. Tripathy DR, Pandey NK, Dinda AK, Ghosh S, Singha Roy A, Dasgupta S. J. Biomol. Struct. Dyn. 33 184-195 (2015)
  13. Determination of Fucose Concentration in a Lectin-Based Displacement Microfluidic Assay. Erlandsson PG, Åström E, Påhlsson P, Robinson ND. Appl. Biochem. Biotechnol. 188 868-877 (2019)
  14. Lectin-Based Affinity Enrichment and Characterization of N-Glycoproteins from Human Tear Film by Mass Spectrometry. Schmelter C, Brueck A, Perumal N, Qu S, Pfeiffer N, Grus FH. Molecules 28 648 (2023)


Related citations provided by authors (3)

  1. Structure of Human Lactoferrin: Crystallographic Structure Analysis and Refinement at 2.8 Angstroms Resolution. Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN J. Mol. Biol. 209 711- (1989)
  2. Transferrins: Insights Into Structure and Function from Studies on Lactoferrin. Baker EN, Rumball SV, Anderson BF Trends Biochem. Sci. (Pers. Ed. ) 12 350- (1987)
  3. Structure of Human Lactoferrin at 3.2 Angstroms Resolution. Anderson BF, Baker HM, Dodson EJ, Norris GE, Rumball SV, Waters JM, Baker EN Proc. Natl. Acad. Sci. U.S.A. 84 1769- (1987)