1l31 Citations

Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability.

Science 239 631-5 (1988)

Cited: 63 times
EuropePMC logo PMID: 3277275

Abstract

To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structures of seven of the mutant lysozymes were determined at high resolution. In each case, replacement of the proline resulted in the formation of an extended alpha-helix. This involves a large conformational change in residues 81 to 83 and smaller shifts that extend 20 angstroms across the protein surface. Unexpectedly, all ten amino acid substitutions marginally reduce protein thermostability. This insensitivity of stability to the amino acid at position 86 is not simply explained by statistical and thermodynamic criteria for helical propensity. The observed conformational changes illustrate a general mechanism by which proteins can tolerate mutations.

Reviews citing this publication (10)

  1. Principles of protein folding--a perspective from simple exact models. Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS. Protein Sci 4 561-602 (1995)
  2. The polypeptide 310-helix. Toniolo C, Benedetti E. Trends Biochem Sci 16 350-353 (1991)
  3. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Senes A, Engel DE, DeGrado WF. Curr Opin Struct Biol 14 465-479 (2004)
  4. Protein stability and molecular adaptation to extreme conditions. Jaenicke R. Eur J Biochem 202 715-728 (1991)
  5. Stability and folding of domain proteins. Jaenicke R. Prog Biophys Mol Biol 71 155-241 (1999)
  6. Review: protein design--where we were, where we are, where we're going. Pokala N, Handel TM. J Struct Biol 134 269-281 (2001)
  7. Mutational studies of protein structures and their stabilities. Shortle D. Q Rev Biophys 25 205-250 (1992)
  8. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. Vriend G, Eijsink V. J Comput Aided Mol Des 7 367-396 (1993)
  9. Analysis and modulation of protein stability. Fontana A. Curr Opin Biotechnol 2 551-560 (1991)
  10. Protein engineering and the study of structure--function relationships in receptors. Ward WH, Timms D, Fersht AR. Trends Pharmacol Sci 11 280-284 (1990)

Articles citing this publication (53)

  1. Systematic mutation of bacteriophage T4 lysozyme. Rennell D, Bouvier SE, Hardy LW, Poteete AR. J Mol Biol 222 67-88 (1991)
  2. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR. J Cell Biol 153 699-708 (2001)
  3. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Matsumura M, Becktel WJ, Matthews BW. Nature 334 406-410 (1988)
  4. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Matsumura M, Becktel WJ, Levitt M, Matthews BW. Proc Natl Acad Sci U S A 86 6562-6566 (1989)
  5. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nicholson H, Becktel WJ, Matthews BW. Nature 336 651-656 (1988)
  6. Theory for protein mutability and biogenesis. Lau KF, Dill KA. Proc Natl Acad Sci U S A 87 638-642 (1990)
  7. C--H...O hydrogen bond involving proline residues in alpha-helices. Chakrabarti P, Chakrabarti S. J Mol Biol 284 867-873 (1998)
  8. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Lazaridis T, Lee I, Karplus M. Protein Sci 6 2589-2605 (1997)
  9. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostable enzymes by construction of hybrid genes. Olsen O, Borriss R, Simon O, Thomsen KK. Mol Gen Genet 225 177-185 (1991)
  10. Multiple roles of prolyl residues in structure and folding. Eyles SJ, Gierasch LM. J Mol Biol 301 737-747 (2000)
  11. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia that affects ligand binding and intracellular movement of receptors. Soutar AK, Knight BL, Patel DD. Proc Natl Acad Sci U S A 86 4166-4170 (1989)
  12. Accommodation of single amino acid insertions by the native state of staphylococcal nuclease. Sondek J, Shortle D. Proteins 7 299-305 (1990)
  13. Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine----isoleucine replacement at position 57. Das G, Hickey DR, McLendon D, McLendon G, Sherman F. Proc Natl Acad Sci U S A 86 496-499 (1989)
  14. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme. Daopin S, Alber T, Baase WA, Wozniak JA, Matthews BW. J Mol Biol 221 647-667 (1991)
  15. A de novo redesign of the WW domain. Kraemer-Pecore CM, Lecomte JT, Desjarlais JR. Protein Sci 12 2194-2205 (2003)
  16. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Nicholson H, Tronrud DE, Becktel WJ, Matthews BW. Biopolymers 32 1431-1441 (1992)
  17. Inhibition of tumor cell growth by retinoids. Lotan R, Lotan D, Sacks PG. Methods Enzymol 190 100-110 (1990)
  18. Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme. Nicholson H, Söderlind E, Tronrud DE, Matthews BW. J Mol Biol 210 181-193 (1989)
  19. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA. J Mol Biol 288 999-1012 (1999)
  20. Flexible-geometry conformational energy maps for the amino acid residue preceding a proline. Hurley JH, Mason DA, Matthews BW. Biopolymers 32 1443-1446 (1992)
  21. Potential use of additivity of mutational effects in simplifying protein engineering. Skinner MM, Terwilliger TC. Proc Natl Acad Sci U S A 93 10753-10757 (1996)
  22. Structural effects induced by mutagenesis affected by crystal packing factors: the structure of a 30-51 disulfide mutant of basic pancreatic trypsin inhibitor. Eigenbrot C, Randal M, Kossiakoff AA. Proteins 14 75-87 (1992)
  23. Genetic analysis of Saccharomyces cerevisiae chromosome I: on the role of mutagen specificity in delimiting the set of genes identifiable using temperature-sensitive-lethal mutations. Harris SD, Pringle JR. Genetics 127 279-285 (1991)
  24. Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin. Weber PC, Lukas TJ, Craig TA, Wilson E, King MM, Kwiatkowski AP, Watterson DM. Proteins 6 70-85 (1989)
  25. Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Morris KN, Wool IG. Proc Natl Acad Sci U S A 89 4869-4873 (1992)
  26. Molecular analysis of Saccharomyces cerevisiae chromosome I. On the number of genes and the identification of essential genes using temperature-sensitive-lethal mutations. Harris SD, Cheng J, Pugh TA, Pringle JR. J Mol Biol 225 53-65 (1992)
  27. Functional origins of fitness effect-sizes of compensatory mutations in the DNA bacteriophage phiX174. Poon AF, Chao L. Evolution 60 2032-2043 (2006)
  28. Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics. Rajpal A, Taylor MG, Kirsch JF. Protein Sci 7 1868-1874 (1998)
  29. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. Sondek J, Shortle D. Proteins 13 132-140 (1992)
  30. The Glu 2- ... Arg 10+ side-chain interaction in the C-peptide helix of ribonuclease A. Fairman R, Shoemaker KR, York EJ, Stewart JM, Baldwin RL. Biophys Chem 37 107-119 (1990)
  31. Experimental evolution of adenylate kinase reveals contrasting strategies toward protein thermostability. Miller C, Davlieva M, Wilson C, White KI, Couñago R, Wu G, Myers JC, Wittung-Stafshede P, Shamoo Y. Biophys J 99 887-896 (2010)
  32. Proline in alpha-helical kink is required for folding kinetics but not for kinked structure, function, or stability of heat shock transcription factor. Hardy JA, Nelson HC. Protein Sci 9 2128-2141 (2000)
  33. Crystal structures of subtilisin BPN' variants containing disulfide bonds and cavities: concerted structural rearrangements induced by mutagenesis. Katz B, Kossiakoff AA. Proteins 7 343-357 (1990)
  34. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa. Trevino SR, Gokulan K, Newsom S, Thurlkill RL, Shaw KL, Mitkevich VA, Makarov AA, Sacchettini JC, Scholtz JM, Pace CN. J Mol Biol 354 967-978 (2005)
  35. Caspase-6 latent state stability relies on helical propensity. Vaidya S, Hardy JA. Biochemistry 50 3282-3287 (2011)
  36. Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline. Gray TM, Arnoys EJ, Blankespoor S, Born T, Jagar R, Everman R, Plowman D, Stair A, Zhang D. Protein Sci 5 742-751 (1996)
  37. High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations. Engelhard M, Hess B, Metz G, Kreutz W, Siebert F, Soppa J, Oesterhelt D. Eur Biophys J 18 17-24 (1990)
  38. Correlation of co-ordinated amino acid changes at the two-domain interface of cysteine proteases with protein stability. Vernet T, Tessier DC, Khouri HE, Altschuh D. J Mol Biol 224 501-509 (1992)
  39. Equilibrium phi-analysis of a molten globule: the 1-149 apoflavodoxin fragment. López-Llano J, Campos LA, Bueno M, Sancho J. J Mol Biol 356 354-366 (2006)
  40. Thermodynamics of replacing an alpha-helical Pro residue in the P40S mutant of Escherichia coli thioredoxin. Chakrabarti A, Srivastava S, Swaminathan CP, Surolia A, Varadarajan R. Protein Sci 8 2455-2459 (1999)
  41. Structural consequences of replacement of an alpha-helical Pro residue in Escherichia coli thioredoxin. Rudresh, Jain R, Dani V, Mitra A, Srivastava S, Sarma SP, Varadarajan R, Ramakumar S. Protein Eng 15 627-633 (2002)
  42. Effect of P to A mutation of the N-terminal residue adjacent to the Rgd motif on rhodostomin: importance of dynamics in integrin recognition. Shiu JH, Chen CY, Chen YC, Chang YT, Chang YS, Huang CH, Chuang WJ. PLoS One 7 e28833 (2012)
  43. Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis. Airaksinen A, Hovi T. Nucleic Acids Res 26 576-581 (1998)
  44. The role of a trans-proline in the folding mechanism of ribonuclease T1. Schindler T, Mayr LM, Landt O, Hahn U, Schmid FX. Eur J Biochem 241 516-524 (1996)
  45. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein. Prajapati RS, Lingaraju GM, Bacchawat K, Surolia A, Varadarajan R. Proteins 53 863-871 (2003)
  46. Cooperativity of mutational effects within a six amino acid residues substitution that induces a major conformational change in human H ferritin. Jappelli R, Cesareni G. Biochem Biophys Res Commun 250 342-346 (1998)
  47. Membrane activity of the southern cowpea mosaic virus coat protein: the role of basic amino acids, helix-forming potential, and lipid composition. Lee SK, Dabney-Smith C, Hacker DL, Bruce BD. Virology 291 299-310 (2001)
  48. The thermal stability of the tryptic fragment of bovine microsomal cytochrome b5 and a variant containing six additional residues. Newbold RJ, Hewson R, Whitford D. FEBS Lett 314 419-424 (1992)
  49. Structural alteration of mouse P450coh by mutation of glycine-207 to proline: spin equilibrium, enzyme kinetics, and heat sensitivity. Juvonen RO, Iwasaki M, Sueyoshi T, Negishi M. Biochem J 294 ( Pt 1) 31-34 (1993)
  50. Trans-substitution of the proximal hydrogen bond in myoglobin: II. Energetics, functional consequences, and implications for hemoglobin allostery. Barrick D. Proteins 39 291-308 (2000)
  51. Local sequence-structure relationships in proteins. Škrbić T, Maritan A, Giacometti A, Banavar JR. Protein Sci 30 818-829 (2021)
  52. Tyr26 and Phe73 are essential for full biological activity of the Fd gene 5 protein. O'Donohue MJ, Scarlett GP, Kneale GG. FEMS Microbiol Lett 109 219-223 (1993)
  53. A method for introducing site-specific mutations using oligonucleotide primers and its application to site-saturation mutagenesis. O'Donohue MJ, Kneale GG. Mol Biotechnol 6 179-189 (1996)


Related citations provided by authors (19)

  1. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.. Matsumura M, Wozniak JA, Sun DP, Matthews BW J Biol Chem 264 16059-66 (1989)
  2. High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His. Weaver LH, Gray TM, Gruetter MG, Anderson DE, Wozniak JA, Dahlquist FW, Matthews BW Biochemistry 28 3793- (1989)
  3. Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme.. Nicholson H, Söderlind E, Tronrud DE, Matthews BW J Mol Biol 210 181-93 (1989)
  4. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3.. Matsumura M, Becktel WJ, Matthews BW Nature 334 406-10 (1988)
  5. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles.. Nicholson H, Becktel WJ, Matthews BW Nature 336 651-6 (1988)
  6. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.. Matthews BW, Nicholson H, Becktel WJ Proc Natl Acad Sci U S A 84 6663-7 (1987)
  7. Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid. Gray TM, Matthews BW J. Biol. Chem. 262 16858- (1987)
  8. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme.. Alber T, Sun DP, Wilson K, Wozniak JA, Cook SP, Matthews BW Nature 330 41-6
  9. Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile. Gruetter MG, Gray TM, Weaver LH, Alber T, Wilson K, Matthews BW J. Mol. Biol. 197 315- (1987)
  10. Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution. Weaver LH, Matthews BW J. Mol. Biol. 193 189- (1987)
  11. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein.. Alber T, Sun DP, Nye JA, Muchmore DC, Matthews BW Biochemistry 26 3754-8 (1987)
  12. Common precursor of lysozymes of hen egg-white and bacteriophage T4.. Matthews BW, Grütter MG, Anderson WF, Remington SJ Nature 290 334-5 (1981)
  13. Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis. Anderson WF, Gruetter MG, Remington SJ, Weaver LH, Matthews BW J. Mol. Biol. 147 523- (1981)
  14. Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications. Matthews BW, Remington SJ, Gruetter MG, Anderson WF J. Mol. Biol. 147 545- (1981)
  15. Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution. Remington SJ, Anderson WF, Owen J, Teneyck LF, Grainger CT, Matthews BW J. Mol. Biol. 118 81- (1978)
  16. Atomic Coordinates for T4 Phage Lysozyme. Remington SJ, Teneyck LF, Matthews BW Biochem. Biophys. Res. Commun. 75 265- (1977)
  17. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.. Matthews BW Biochim Biophys Acta 405 442-51 (1975)
  18. The three dimensional structure of the lysozyme from bacteriophage T4.. Matthews BW, Remington SJ Proc Natl Acad Sci U S A 71 4178-82 (1974)
  19. Crystallographic Data for Lysozyme from Bacteriophage T4. Matthews BW, Dahlquist FW, Maynard AY J. Mol. Biol. 78 575- (1973)