1kay Citations

Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis.

J Biol Chem 271 15874-8 (1996)
Related entries: 1kax, 1kaz

Cited: 82 times
EuropePMC logo PMID: 8663302

Abstract

It has been proposed that lysine 71 of the bovine 70-kDa heat shock cognate protein might participate in catalysis of ATP hydrolysis by stabilizing an H2O molecule or an OH- ion for nucleophilic attack on the gamma-phosphate of the nucleotide (Flaherty, K. M., Wilbanks, S. M., DeLuca-Flaherty, C., and McKay, D. B. (1994) J. Biol. Chem. 12899-12907; Wilbanks, S. M., DeLuca-Flaherty, C., and McKay, D. B. (1994) J. Biol. Chem. 269, 12893-12898). To test this hypothesis, lysine 71 of the ATPase fragment 70-kDa heat shock cognate protein has been mutated to glutamic acid, methionine, and alanine; and the kinetic and structural properties of the mutant proteins have been determined. All three mutant proteins are devoid of measurable ATP hydrolysis activity. Crystal structures of the mutant proteins have been determined to a resolution of 1.7 A; all three have ATP in the nucleotide binding site. These data identify lysine 71 as a residue that is essential for chemical hydrolysis of ATP.

Articles - 1kay mentioned but not cited (1)

  1. Recognition of functional sites in protein structures. Shulman-Peleg A, Nussinov R, Wolfson HJ. J Mol Biol 339 607-633 (2004)


Reviews citing this publication (8)

  1. The Hsp70 and Hsp60 chaperone machines. Bukau B, Horwich AL. Cell 92 351-366 (1998)
  2. Allostery in the Hsp70 chaperone proteins. Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Top Curr Chem 328 99-153 (2013)
  3. Tetratricopeptide repeat cochaperones in steroid receptor complexes. Smith DF. Cell Stress Chaperones 9 109-121 (2004)
  4. Hsp70 structure, function, regulation and influence on yeast prions. Sharma D, Masison DC. Protein Pept Lett 16 571-581 (2009)
  5. Insights into the molecular mechanism of allostery in Hsp70s. Mayer MP, Kityk R. Front Mol Biosci 2 58 (2015)
  6. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Mack KL, Shorter J. Front Mol Biosci 3 8 (2016)
  7. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Velasco L, Dublang L, Moro F, Muga A. Int J Mol Sci 20 E4122 (2019)
  8. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Karunanayake C, Page RC. Exp Biol Med (Maywood) 246 1419-1434 (2021)

Articles citing this publication (73)

  1. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Liu Q, Hendrickson WA. Cell 131 106-120 (2007)
  2. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN, Gestwicki JE, Andino R, Fernandez-Sesma A, Frydman J. Cell 163 1108-1123 (2015)
  3. Allosteric regulation of Hsp70 chaperones by a proline switch. Vogel M, Bukau B, Mayer MP. Mol Cell 21 359-367 (2006)
  4. Functional analysis of Hsp70 inhibitors. Schlecht R, Scholz SR, Dahmen H, Wegener A, Sirrenberg C, Musil D, Bomke J, Eggenweiler HM, Mayer MP, Bukau B. PLoS One 8 e78443 (2013)
  5. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Hirt RP, Healy B, Vossbrinck CR, Canning EU, Embley TM. Curr Biol 7 995-998 (1997)
  6. Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. Newmyer SL, Schmid SL. J Cell Biol 152 607-620 (2001)
  7. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Zhuravleva A, Gierasch LM. Proc Natl Acad Sci U S A 108 6987-6992 (2011)
  8. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Wada K, Nagai Y. Proc Natl Acad Sci U S A 112 E2497-506 (2015)
  9. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A. Structure 5 403-414 (1997)
  10. Allostery in Hsp70 chaperones is transduced by subdomain rotations. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER. J Mol Biol 388 475-490 (2009)
  11. Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chang L, Miyata Y, Ung PM, Bertelsen EB, McQuade TJ, Carlson HA, Zuiderweg ER, Gestwicki JE. Chem Biol 18 210-221 (2011)
  12. Identification of protein functions from a molecular surface database, eF-site. Kinoshita K, Furui J, Nakamura H. J Struct Funct Genomics 2 9-22 (2002)
  13. Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex. Scior A, Buntru A, Arnsburg K, Ast A, Iburg M, Juenemann K, Pigazzini ML, Mlody B, Puchkov D, Priller J, Wanker EE, Prigione A, Kirstein J. EMBO J 37 282-299 (2018)
  14. Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. Chang YW, Sun YJ, Wang C, Hsiao CD. J Biol Chem 283 15502-15511 (2008)
  15. Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A. Mol Cell Biol 23 1764-1774 (2003)
  16. The chaperone network connected to human ribosome-associated complex. Jaiswal H, Conz C, Otto H, Wölfle T, Fitzke E, Mayer MP, Rospert S. Mol Cell Biol 31 1160-1173 (2011)
  17. Structural characterization of a eukaryotic chaperone--the ribosome-associated complex. Leidig C, Bange G, Kopp J, Amlacher S, Aravind A, Wickles S, Witte G, Hurt E, Beckmann R, Sinning I. Nat Struct Mol Biol 20 23-28 (2013)
  18. NMR investigations of allosteric processes in a two-domain Thermus thermophilus Hsp70 molecular chaperone. Revington M, Zhang Y, Yip GN, Kurochkin AV, Zuiderweg ER. J Mol Biol 349 163-183 (2005)
  19. The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. Zhang Y, Zuiderweg ER. Proc Natl Acad Sci U S A 101 10272-10277 (2004)
  20. Human and yeast Hsp110 chaperones exhibit functional differences. Raviol H, Bukau B, Mayer MP. FEBS Lett 580 168-174 (2006)
  21. Heat shock protein 72 is associated with the hepatitis C virus replicase complex and enhances viral RNA replication. Chen YJ, Chen YH, Chow LP, Tsai YH, Chen PH, Huang CY, Chen WT, Hwang LH. J Biol Chem 285 28183-28190 (2010)
  22. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. French JB, Zhao H, An S, Niessen S, Deng Y, Cravatt BF, Benkovic SJ. Proc Natl Acad Sci U S A 110 2528-2533 (2013)
  23. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE. J Biol Chem 285 21282-21291 (2010)
  24. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, Giffard RG. J Cereb Blood Flow Metab 26 937-950 (2006)
  25. Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, Suzuki H, Iizuka H. J Biol Chem 281 22882-22895 (2006)
  26. Hsc70 focus formation at the periphery of HSV-1 transcription sites requires ICP27. Li L, Johnson LA, Dai-Ju JQ, Sandri-Goldin RM. PLoS One 3 e1491 (2008)
  27. ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. Barthel TK, Zhang J, Walker GC. J Bacteriol 183 5482-5490 (2001)
  28. Biochemical and structural studies on the high affinity of Hsp70 for ADP. Arakawa A, Handa N, Shirouzu M, Yokoyama S. Protein Sci 20 1367-1379 (2011)
  29. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Woo HJ, Jiang J, Lafer EM, Sousa R. Biochemistry 48 11470-11477 (2009)
  30. Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain. Gumiero A, Conz C, Gesé GV, Zhang Y, Weyer FA, Lapouge K, Kappes J, von Plehwe U, Schermann G, Fitzke E, Wölfle T, Fischer T, Rospert S, Sinning I. Nat Commun 7 13563 (2016)
  31. 5-oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of L-selectin shedding, surface expression of CD11b, actin polymerization, and calcium mobilization in human eosinophils. Powell WS, Gravel S, Halwani F. Am J Respir Cell Mol Biol 20 163-170 (1999)
  32. Mutation of Hip's carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Prapapanich V, Chen S, Smith DF. Mol Cell Biol 18 944-952 (1998)
  33. Uncoating ATPase Hsc70 is recruited by invariant chain and controls the size of endocytic compartments. Lagaudrière-Gesbert C, Newmyer SL, Gregers TF, Bakke O, Ploegh HL. Proc Natl Acad Sci U S A 99 1515-1520 (2002)
  34. Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM, Zuiderweg ER, Gestwicki JE, Dickey CA. J Biol Chem 290 13115-13127 (2015)
  35. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. Aponte RA, Zimmermann S, Reinstein J. J Mol Biol 399 154-167 (2010)
  36. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. Pérez-Vargas J, Romero P, López S, Arias CF. J Virol 80 3322-3331 (2006)
  37. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding. Baaklini I, Wong MJ, Hantouche C, Patel Y, Shrier A, Young JC. J Biol Chem 287 41939-41954 (2012)
  38. ATPgammaS disrupts human immunodeficiency virus type 1 virion core integrity. Gurer C, Höglund A, Höglund S, Luban J. J Virol 79 5557-5567 (2005)
  39. Giardia lamblia expresses a proteobacterial-like DnaK homolog. Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML. Mol Biol Evol 18 530-541 (2001)
  40. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70. Nicolaï A, Delarue P, Senet P. PLoS Comput Biol 9 e1003379 (2013)
  41. Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae. Todd-Corlett A, Jones E, Seghers C, Gething MJ. J Mol Biol 367 770-787 (2007)
  42. Quantum and classical dynamics simulations of ATP hydrolysis in solution. Harrison CB, Schulten K. J Chem Theory Comput 8 2328-2335 (2012)
  43. The cellular chaperone hsc70 is specifically recruited to reovirus viral factories independently of its chaperone function. Kaufer S, Coffey CM, Parker JS. J Virol 86 1079-1089 (2012)
  44. Modeling and docking studies on novel mutants (K71L and T204V) of the ATPase domain of human heat shock 70 kDa protein 1. Elengoe A, Naser MA, Hamdan S, Hamdan S. Int J Mol Sci 15 6797-6814 (2014)
  45. Mutational analysis of Ser14 and Asp157 in the nucleotide-binding site of beta-actin. Schüler H, Korenbaum E, Schutt CE, Lindberg U, Karlsson R. Eur J Biochem 265 210-220 (1999)
  46. Regulation of the Dbl proto-oncogene by heat shock cognate protein 70 (Hsc70). Kauppinen KP, Duan F, Wels JI, Manor D. J Biol Chem 280 21638-21644 (2005)
  47. Mutational analysis of arginine 177 in the nucleotide binding site of beta-actin. Schüler H, Nyåkern M, Schutt CE, Lindberg U, Karlsson R. Eur J Biochem 267 4054-4062 (2000)
  48. Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, Kukimoto-Niino M, Sugano S, Tanaka A, Shirouzu M, Yokoyama S. Acta Crystallogr D Biol Crystallogr 66 223-232 (2010)
  49. The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis. Wu X, Yano M, Washida H, Kido H. Biochem J 378 793-799 (2004)
  50. Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. Zhan C, Yang J, Dong XC, Wang YL. J Mol Graph Model 26 20-31 (2007)
  51. MDN: A Web Portal for Network Analysis of Molecular Dynamics Simulations. Ribeiro AA, Ortiz V. Biophys J 109 1110-1116 (2015)
  52. Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant. O'Donnell JP, Marsh HM, Sondermann H, Sevier CS. Biochemistry 57 1073-1086 (2018)
  53. Functional characterization of natural variants found on the major stress inducible 70-kDa heat shock gene, HSPA1A, in humans. Oliverio R, Nguyen P, Kdeiss B, Ord S, Daniels AJ, Nikolaidis N. Biochem Biophys Res Commun 506 799-804 (2018)
  54. Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-kDa Heat-Shock Protein, HspA1A. Smulders L, Daniels AJ, Plescia CB, Berger D, Stahelin RV, Nikolaidis N. Int J Mol Sci 21 E5995 (2020)
  55. Measurement and interpretation of 15N-1H residual dipolar couplings in larger proteins. Bhattacharya A, Revington M, Zuiderweg ER. J Magn Reson 203 11-28 (2010)
  56. Biophysical Consequences of EVEN-PLUS Syndrome Mutations for the Function of Mortalin. Moseng MA, Nix JC, Page RC. J Phys Chem B 123 3383-3396 (2019)
  57. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. Espinoza MF, Nguyen KK, Sycks MM, Lyu Z, Quanrud GM, Montoya MR, Genereux JC. J Biol Chem 298 102597 (2022)
  58. Heat shock-induced chaperoning by Hsp70 is enabled in-cell. Guin D, Gelman H, Wang Y, Gruebele M. PLoS One 14 e0222990 (2019)
  59. Inhibition of the Human Hsc70 System by Small Ligands as a Potential Anticancer Approach. Dublang L, Underhaug J, Flydal MI, Velasco-Carneros L, Maréchal JD, Moro F, Boyano MD, Martinez A, Muga A. Cancers (Basel) 13 2936 (2021)
  60. Subcellular distribution of non-muscle myosin IIb is controlled by FILIP through Hsc70. Yagi H, Takabayashi T, Xie MJ, Kuroda K, Sato M. PLoS One 12 e0172257 (2017)
  61. Toward understanding allosteric signaling mechanisms in the ATPase domain of molecular chaperones. Liu Y, Bahar I. Pac Symp Biocomput 269-280 (2010)
  62. Common functionally important motions of the nucleotide-binding domain of Hsp70. Gołaś EI, Czaplewski C, Scheraga HA, Liwo A. Proteins 83 282-299 (2015)
  63. Histidine 89 is an essential residue for Hsp70 in the phosphate transfer reaction. Lu Y, Hu Q, Yang C, Gao F. Cell Stress Chaperones 11 148-153 (2006)
  64. Protein surface representation and analysis by dimension reduction. Yang H, Qureshi R, Sacan A. Proteome Sci 10 Suppl 1 S1 (2012)
  65. ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity. Mao Y, Deng A, Qu N, Wu X. Biochemistry (Mosc) 71 1222-1229 (2006)
  66. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP). Shah DD, Singh SM, Dzieciatkowska M, Mallela KMG. PLoS One 12 e0183975 (2017)
  67. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. Cell Res 33 851-866 (2023)
  68. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Liu Z, Zhang W, Sun B, Ma Y, He M, Pan Y, Wang F. Chem Sci 12 1451-1457 (2020)
  69. Acceleration of Binding Site Comparisons by Graph Partitioning. Krotzky T, Klebe G. Mol Inform 34 550-558 (2015)
  70. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase. Khalid RR, Maryam A, Sezerman OU, Mylonas E, Siddiqi AR, Kokkinidis M. Sci Rep 10 9488 (2020)
  71. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. Jaimon E, Tripathi A, Khurana A, Ghosh D, Sugatha J, Datta S. J Biol Chem 297 101422 (2021)
  72. Fusion of Hsp70 to GFP Impairs Its Function and Causes Formation of Misfolded Protein Deposits under Mild Stress in Yeast. Grosfeld EV, Beizer AY, Dergalev AA, Agaphonov MO, Alexandrov AI. Int J Mol Sci 24 12758 (2023)
  73. Neutron crystallographic analysis of the nucleotide-binding domain of Hsp72 in complex with ADP. Yokoyama T, Fujii S, Ostermann A, Schrader TE, Nabeshima Y, Mizuguchi M. IUCrJ 9 562-572 (2022)


Related citations provided by authors (2)