1hw3 Citations

Structure of human thymidylate synthase suggests advantages of chemotherapy with noncompetitive inhibitors.

J Biol Chem 276 14170-7 (2001)
Cited: 48 times
EuropePMC logo PMID: 11278511

Abstract

Thymidylate synthase (TS) is a major target in the chemotherapy of colorectal cancer and some other neoplasms. The emergence of resistance to the treatment is often related to the increased levels of TS in cancer cells, which have been linked to the elimination of TS binding to its own mRNA upon drug binding, a feedback regulatory mechanism, and/or to the increased stability to intracellular degradation of TS.drug complexes (versus unliganded TS). The active site loop of human TS (hTS) has a unique conformation resulted from a rotation by 180 degrees relative to its orientation in bacterial TSs. In this conformation, the enzyme must be inactive, because the catalytic cysteine is no longer positioned in the ligand-binding pocket. The ordered solvent structure obtained from high resolution crystallographic data (2.0 A) suggests that the inactive loop conformation promotes mRNA binding and intracellular degradation of the enzyme. This hypothesis is supported by fluorescence studies, which indicate that in solution both active and inactive forms of hTS are present. The binding of phosphate ion shifts the equilibrium toward the inactive conformation; subsequent dUMP binding reverses the equilibrium toward the active form. Thus, TS inhibition via stabilization of the inactive conformation should lead to less resistance than is observed with presently used drugs, which are analogs of its substrates, dUMP and CH(2)H(4)folate, and bind in the active site, promoting the active conformation. The presence of an extension at the N terminus of native hTS has no significant effect on kinetic properties or crystal structure.

Articles - 1hw3 mentioned but not cited (9)

  1. Assembly reflects evolution of protein complexes. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA. Nature 453 1262-1265 (2008)
  2. A robust bulk-solvent correction and anisotropic scaling procedure. Afonine PV, Grosse-Kunstleve RW, Adams PD. Acta Crystallogr D Biol Crystallogr 61 850-855 (2005)
  3. Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Hetényi C, van der Spoel D. Protein Sci 20 880-893 (2011)
  4. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. Chen D, Jansson A, Sim D, Larsson A, Nordlund P. J Biol Chem 292 13449-13458 (2017)
  5. Conformational diversity analysis reveals three functional mechanisms in proteins. Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SC, Parisi G. PLoS Comput Biol 13 e1005398 (2017)
  6. Hotspots in an obligate homodimeric anticancer target. Structural and functional effects of interfacial mutations in human thymidylate synthase. Salo-Ahen OM, Tochowicz A, Pozzi C, Cardinale D, Ferrari S, Boum Y, Mangani S, Stroud RM, Saxena P, Myllykallio H, Costi MP, Ponterini G, Wade RC. J Med Chem 58 3572-3581 (2015)
  7. Variants of human thymidylate synthase with loop 181-197 stabilized in the inactive conformation. Lovelace LL, Johnson SR, Gibson LM, Bell BJ, Berger SH, Lebioda L. Protein Sci 18 1628-1636 (2009)
  8. Three Alkaloids from an Apocynaceae Species, Aspidosperma spruceanum as Antileishmaniasis Agents by In Silico Demo-case Studies. Morales-Jadán D, Blanco-Salas J, Ruiz-Téllez T, Centeno F. Plants (Basel) 9 (2020)
  9. Metadata analysis to explore hub of the hub-genes highlighting their functions, pathways and regulators for cervical cancer diagnosis and therapies. Reza MS, Hossen MA, Harun-Or-Roshid M, Siddika MA, Kabir MH, Mollah MNH. Discov Oncol 13 79 (2022)


Reviews citing this publication (3)

  1. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Taddia L, D'Arca D, Ferrari S, Marraccini C, Severi L, Ponterini G, Assaraf YG, Marverti G, Costi MP. Drug Resist Updat 23 20-54 (2015)
  2. Structure-based studies on species-specific inhibition of thymidylate synthase. Costi MP, Tondi D, Rinaldi M, Barlocco D, Pecorari P, Soragni F, Venturelli A, Stroud RM. Biochim Biophys Acta 1587 206-214 (2002)
  3. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Liu H, Jeffery CJ. Molecules 25 (2020)

Articles citing this publication (36)

  1. Role of Y94 in proton and hydride transfers catalyzed by thymidylate synthase. Hong B, Maley F, Kohen A. Biochemistry 46 14188-14197 (2007)
  2. Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. Cardinale D, Guaitoli G, Tondi D, Luciani R, Henrich S, Salo-Ahen OM, Ferrari S, Marverti G, Guerrieri D, Ligabue A, Frassineti C, Pozzi C, Mangani S, Fessas D, Guerrini R, Ponterini G, Wade RC, Costi MP. Proc Natl Acad Sci U S A 108 E542-9 (2011)
  3. Thymidylate synthase expression in circulating tumor cells: a new tool to predict 5-fluorouracil resistance in metastatic colorectal cancer patients. Abdallah EA, Fanelli MF, Buim ME, Machado Netto MC, Gasparini Junior JL, Souza E Silva V, Dettino AL, Mingues NB, Romero JV, Ocea LM, Rocha BM, Alves VS, Araújo DV, Chinen LT. Int J Cancer 137 1397-1405 (2015)
  4. Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase. Peña MM, Xing YY, Koli S, Berger FG. Biochem J 394 355-363 (2006)
  5. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Riahi-Chebbi I, Souid S, Othman H, Haoues M, Karoui H, Morel A, Srairi-Abid N, Essafi M, Essafi-Benkhadir K. Sci Rep 9 195 (2019)
  6. The intrinsically disordered N-terminal domain of thymidylate synthase targets the enzyme to the ubiquitin-independent proteasomal degradation pathway. Peña MM, Melo SP, Xing YY, White K, Barbour KW, Berger FG. J Biol Chem 284 31597-31607 (2009)
  7. Cooperative inhibition of human thymidylate synthase by mixtures of active site binding and allosteric inhibitors. Lovelace LL, Gibson LM, Lebioda L. Biochemistry 46 2823-2830 (2007)
  8. Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin-independent degradation by the proteasome. Melo SP, Barbour KW, Berger FG. J Biol Chem 286 36559-36567 (2011)
  9. Downregulation of thymidylate synthase with arsenic trioxide in lung adenocarcinoma. Lam SK, Mak JC, Zheng CY, Li YY, Kwong YL, Ho JC. Int J Oncol 44 2093-2102 (2014)
  10. Functional dissection of the N-terminal degron of human thymidylate synthase. Melo SP, Yoshida A, Berger FG. Biochem J 432 217-226 (2010)
  11. The R163K mutant of human thymidylate synthase is stabilized in an active conformation: structural asymmetry and reactivity of cysteine 195. Gibson LM, Lovelace LL, Lebioda L. Biochemistry 47 4636-4643 (2008)
  12. Analysis of mRNA recognition by human thymidylate synthase. Brunn ND, Dibrov SM, Kao MB, Ghassemian M, Hermann T. Biosci Rep 34 e00168 (2014)
  13. Activation of Two Sequential H-transfers in the Thymidylate Synthase Catalyzed Reaction. Islam Z, Strutzenberg TS, Ghosh AK, Kohen A. ACS Catal 5 6061-6068 (2015)
  14. Human thymidylate synthase with loop 181-197 stabilized in an inactive conformation: ligand interactions, phosphorylation, and inhibition profiles. Luo B, Repalli J, Yousef AM, Johnson SR, Lebioda L, Berger SH. Protein Sci 20 87-94 (2011)
  15. The active-inactive transition of human thymidylate synthase: targeted molecular dynamics simulations. Salo-Ahen OM, Wade RC. Proteins 79 2886-2899 (2011)
  16. Alanine mutants of the interface residues of human thymidylate synthase decode key features of the binding mode of allosteric anticancer peptides. Tochowicz A, Santucci M, Saxena P, Guaitoli G, Trande M, Finer-Moore J, Stroud RM, Costi MP. J Med Chem 58 1012-1018 (2015)
  17. Virtual screening reveals allosteric inhibitors of the Toxoplasma gondii thymidylate synthase-dihydrofolate reductase. Sharma H, Landau MJ, Sullivan TJ, Kumar VP, Dahlgren MK, Jorgensen WL, Anderson KS. Bioorg Med Chem Lett 24 1232-1235 (2014)
  18. Advances in the REDCAT software package. Schmidt C, Irausquin SJ, Valafar H. BMC Bioinformatics 14 302 (2013)
  19. Replacement of Val3 in human thymidylate synthase affects its kinetic properties and intracellular stability . Huang X, Gibson LM, Bell BJ, Lovelace LL, Peña MM, Berger FG, Berger SH, Lebioda L. Biochemistry 49 2475-2482 (2010)
  20. Selective peptide inhibitors of bifunctional thymidylate synthase-dihydrofolate reductase from Toxoplasma gondii provide insights into domain-domain communication and allosteric regulation. Landau MJ, Sharma H, Anderson KS. Protein Sci 22 1161-1173 (2013)
  21. Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine. Hew K, Dahlroth SL, Veerappan S, Pan LX, Cornvik T, Nordlund P. PLoS One 10 e0143947 (2015)
  22. Targeting a regulatory element in human thymidylate synthase mRNA. Brunn ND, Garcia Sega E, Kao MB, Hermann T. Chembiochem 13 2738-2744 (2012)
  23. The general base in the thymidylate synthase catalyzed proton abstraction. Ghosh AK, Islam Z, Krueger J, Abeysinghe T, Kohen A. Phys Chem Chem Phys 17 30867-30875 (2015)
  24. Conservation and Role of Electrostatics in Thymidylate Synthase. Garg D, Skouloubris S, Briffotaux J, Myllykallio H, Wade RC. Sci Rep 5 17356 (2015)
  25. Evolution of metamorphism in thymidylate synthases within the primate lineages. Luo B, Johnson SR, Lebioda L, Berger SH. J Mol Evol 72 306-314 (2011)
  26. Positive Cooperativity in Substrate Binding by Human Thymidylate Synthase. Bonin JP, Sapienza PJ, Wilkerson E, Goldfarb D, Wang L, Herring L, Chen X, Major MB, Lee AL. Biophys J 117 1074-1084 (2019)
  27. Biomolecular study of human thymidylate synthase conformer-selective inhibitors: New chemotherapeutic approach. El-Mesallamy HO, El Magdoub HM, Chapman JM, Hamdy NM, Schaalan MF, Hammad LN, Berger SH. PLoS One 13 e0193810 (2018)
  28. Characterization of the bipartite degron that regulates ubiquitin-independent degradation of thymidylate synthase. Barbour KW, Xing YY, Peña EA, Berger FG. Biosci Rep 33 165-173 (2013)
  29. Crystal structure of the active form of native human thymidylate synthase in the absence of bound substrates. Deschamps P, Réty S, Bareille J, Leulliot N. Acta Crystallogr F Struct Biol Commun 73 336-341 (2017)
  30. Folic Acid-Peptide Conjugates Combine Selective Cancer Cell Internalization with Thymidylate Synthase Dimer Interface Targeting. Marverti G, Marraccini C, Martello A, D'Arca D, Pacifico S, Guerrini R, Spyrakis F, Gozzi G, Lauriola A, Santucci M, Cannazza G, Tagliazucchi L, Cazzato AS, Losi L, Ferrari S, Ponterini G, Costi MP. J Med Chem 64 3204-3221 (2021)
  31. Molecular docking studies on quinazoline antifolate derivatives as human thymidylate synthase inhibitors. Srivastava V, Gupta SP, Siddiqi MI, Mishra BN. Bioinformation 4 357-365 (2010)
  32. Role of long-range protein dynamics in different thymidylate synthase catalyzed reactions. Abeysinghe T, Kohen A. Int J Mol Sci 16 7304-7319 (2015)
  33. Preserved hydride transfer mechanism in evolutionarily divergent thymidylate synthases. Abeysinghe T, Hong B, Wang Z, Kohen A. Curr Top Biochem Res 17 19-30 (2016)
  34. Targeting the TS dimer interface in bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa: Virtual screening identifies novel TS allosteric inhibitors. Ruiz VG, Czyzyk DJ, Kumar VP, Jorgensen WL, Anderson KS. Bioorg Med Chem Lett 30 127292 (2020)
  35. Dynamic allostery in substrate binding by human thymidylate synthase. Bonin JP, Sapienza PJ, Lee AL. Elife 11 e79915 (2022)
  36. New Insight into the Octamer of TYMS Stabilized by Intermolecular Cys43-Disulfide. Xie D, Wang L, Xiao Q, Wu X, Zhang L, Yang Q, Wang L. Int J Mol Sci 19 (2018)