1fhx Citations

Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains.

Mol Cell 6 373-84 (2000)
Related entries: 1fao, 1fb8, 1fhw

Cited: 224 times
EuropePMC logo PMID: 10983984

Abstract

Pleckstrin homology (PH) domains are protein modules of around 120 amino acids found in many proteins involved in cellular signaling. Certain PH domains drive signal-dependent membrane recruitment of their host proteins by binding strongly and specifically to lipid second messengers produced by agonist-stimulated phosphoinositide 3-kinases (PI 3-Ks). We describe X-ray crystal structures of two different PH domains bound to Ins(1,3,4,5)P4, the head group of the major PI 3-K product PtdIns(3,4,5)P3. One of these PH domains (from Grp1) is PtdIns(3,4,5)P3 specific, while the other (from DAPP1/PHISH) binds strongly to both PtdIns(3,4,5)P3 and its 5'-dephosphorylation product, PtdIns(3,4)P2. Comparison of the two structures provides an explanation for the distinct phosphoinositide specificities of the two PH domains and allows us to predict the 3-phosphoinositide selectivity of uncharacterized PH domains.

Reviews - 1fhx mentioned but not cited (2)

  1. Translation of the phosphoinositide code by PI effectors. Kutateladze TG. Nat Chem Biol 6 507-513 (2010)
  2. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Pemberton JG, Balla T. Adv Exp Med Biol 1111 77-137 (2019)

Articles - 1fhx mentioned but not cited (4)

  1. Drawing the PDB: Protein-Ligand Complexes in Two Dimensions. Stierand K, Rarey M. ACS Med Chem Lett 1 540-545 (2010)
  2. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, Brazell T, Durugkar KA, Maki J, Ramana CV, Schaffhausen B, Wagner G, Torchilin V, Yuan J, Degterev A. Proc Natl Acad Sci U S A 107 20126-20131 (2010)
  3. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3). Pilling C, Landgraf KE, Falke JJ. Biochemistry 50 9845-9856 (2011)
  4. Computational Analysis of the Binding Specificities of PH Domains. Jiang Z, Liang Z, Shen B, Hu G. Biomed Res Int 2015 792904 (2015)


Reviews citing this publication (43)

  1. The activation of Akt/PKB signaling pathway and cell survival. Song G, Ouyang G, Bao S. J Cell Mol Med 9 59-71 (2005)
  2. The protein kinase B/Akt signalling pathway in human malignancy. Nicholson KM, Anderson NG. Cell Signal 14 381-395 (2002)
  3. Synthesis and function of 3-phosphorylated inositol lipids. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Annu Rev Biochem 70 535-602 (2001)
  4. Membrane recognition by phospholipid-binding domains. Lemmon MA. Nat Rev Mol Cell Biol 9 99-111 (2008)
  5. PIP2 is a necessary cofactor for ion channel function: how and why? Suh BC, Hille B. Annu Rev Biophys 37 175-195 (2008)
  6. Phosphoinositide recognition domains. Lemmon MA. Traffic 4 201-213 (2003)
  7. Membrane-protein interactions in cell signaling and membrane trafficking. Cho W, Stahelin RV. Annu Rev Biophys Biomol Struct 34 119-151 (2005)
  8. The role of PI3K in immune cells. Koyasu S. Nat Immunol 4 313-319 (2003)
  9. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Turner M, Billadeau DD. Nat Rev Immunol 2 476-486 (2002)
  10. Phosphoinositides in constitutive membrane traffic. Roth MG. Physiol Rev 84 699-730 (2004)
  11. Physiological functions of imprinted genes. Tycko B, Morison IM. J Cell Physiol 192 245-258 (2002)
  12. Subcellular targeting by membrane lipids. Hurley JH, Meyer T. Curr Opin Cell Biol 13 146-152 (2001)
  13. Pleckstrin homology domains and the cytoskeleton. Lemmon MA, Ferguson KM, Abrams CS. FEBS Lett 513 71-76 (2002)
  14. Pleckstrin homology (PH) domains and phosphoinositides. Lemmon MA. Biochem Soc Symp 81-93 (2007)
  15. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. Biochim Biophys Acta 1766 120-139 (2006)
  16. Conditional peripheral membrane proteins: facing up to limited specificity. Moravcevic K, Oxley CL, Lemmon MA. Structure 20 15-27 (2012)
  17. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Robertson GP. Cancer Metastasis Rev 24 273-285 (2005)
  18. Modular phosphoinositide-binding domains--their role in signalling and membrane trafficking. Cullen PJ, Cozier GE, Banting G, Mellor H. Curr Biol 11 R882-93 (2001)
  19. Dynamics of phosphoinositides in membrane retrieval and insertion. Czech MP. Annu Rev Physiol 65 791-815 (2003)
  20. Membrane binding domains. Hurley JH. Biochim Biophys Acta 1761 805-811 (2006)
  21. The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Madhunapantula SV, Robertson GP. Pigment Cell Melanoma Res 22 400-419 (2009)
  22. Membrane recognition and targeting by lipid-binding domains. DiNitto JP, Cronin TC, Lambright DG. Sci STKE 2003 re16 (2003)
  23. Vav1: a key signal transducer downstream of the TCR. Tybulewicz VL, Ardouin L, Prisco A, Reynolds LF. Immunol Rev 192 42-52 (2003)
  24. Turning off AKT: PHLPP as a drug target. Newton AC, Trotman LC. Annu Rev Pharmacol Toxicol 54 537-558 (2014)
  25. Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. Maffucci T, Falasca M. FEBS Lett 506 173-179 (2001)
  26. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Xu Y, Seet LF, Hanson B, Hong W. Biochem J 360 513-530 (2001)
  27. Phosphoinositide 3-kinases in T lymphocyte activation. Ward SG, Cantrell DA. Curr Opin Immunol 13 332-338 (2001)
  28. Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. Steinberg BE, Grinstein S. J Clin Invest 118 2002-2011 (2008)
  29. Small-molecule inhibitors of the PI3K signaling network. McNamara CR, Degterev A. Future Med Chem 3 549-565 (2011)
  30. Molecular characteristics of phosphoinositide binding. Rosenhouse-Dantsker A, Logothetis DE. Pflugers Arch 455 45-53 (2007)
  31. Molecular mechanisms and regulation of ceramide transport. Perry RJ, Ridgway ND. Biochim Biophys Acta 1734 220-234 (2005)
  32. The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Madhunapantula SV, Mosca PJ, Robertson GP. Cancer Biol Ther 12 1032-1049 (2011)
  33. The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy. Noguchi M, Hirata N, Suizu F. Biochim Biophys Acta 1846 342-352 (2014)
  34. Rho GTPases control specific cytoskeleton-dependent functions of hematopoietic stem cells. Nayak RC, Chang KH, Vaitinadin NS, Cancelas JA. Immunol Rev 256 255-268 (2013)
  35. Specific localization and timing in neuronal signal transduction mediated by protein-lipid interactions. Fivaz M, Meyer T. Neuron 40 319-330 (2003)
  36. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M, Marshall AJ. Immunol Rev 232 255-272 (2009)
  37. Phosphatidylinositol 3-kinase and the control of endosome dynamics: new players defined by structural motifs. Corvera S. Traffic 2 859-866 (2001)
  38. Role of the adaptor proteins Bam32, TAPP1 and TAPP2 in lymphocyte activation. Allam A, Marshall AJ. Immunol Lett 97 7-17 (2005)
  39. Floundering about at cell membranes: a structural view of phospholipid signaling. Hurley JH, Tsujishita Y, Pearson MA. Curr Opin Struct Biol 10 737-743 (2000)
  40. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Bhat SS, Ali R, Khanday FA. Cell Prolif 52 e12562 (2019)
  41. Molecular analysis of protein-phosphoinositide interactions. Kutateladze TG. Curr Top Microbiol Immunol 362 111-126 (2012)
  42. Switching Roles: Beneficial Effects of Adipose Tissue-Derived Mesenchymal Stem Cells on Microglia and Their Implication in Neurodegenerative Diseases. Sánchez-Castillo AI, Sepúlveda MR, Marín-Teva JL, Cuadros MA, Martín-Oliva D, González-Rey E, Delgado M, Neubrand VE. Biomolecules 12 219 (2022)
  43. Computational and theoretical approaches for studies of a lipid recognition protein on biological membranes. Yamamoto E. Biophys Physicobiol 14 153-160 (2017)

Articles citing this publication (175)

  1. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Gao T, Furnari F, Newton AC. Mol Cell 18 13-24 (2005)
  2. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Brognard J, Sierecki E, Gao T, Newton AC. Mol Cell 25 917-931 (2007)
  3. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Levine TP, Munro S. Curr Biol 12 695-704 (2002)
  4. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, Overduin M. Nat Cell Biol 3 613-618 (2001)
  5. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA. EMBO J 23 1922-1933 (2004)
  6. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL. EMBO J 21 5057-5068 (2002)
  7. High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Thomas CC, Deak M, Alessi DR, van Aalten DM. Curr Biol 12 1256-1262 (2002)
  8. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J. Cell 119 393-405 (2004)
  9. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL. Mol Cell 8 829-839 (2001)
  10. Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DM. Biochem J 375 531-538 (2003)
  11. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL. Cell 125 99-111 (2006)
  12. Akt: a double-edged sword in cell proliferation and genome stability. Xu N, Lao Y, Zhang Y, Gillespie DA. J Oncol 2012 951724 (2012)
  13. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell SL, Sondek J. EMBO J 21 1315-1326 (2002)
  14. PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J, David G, Gettemans J. Mol Cell 9 1215-1225 (2002)
  15. ARAP1: a point of convergence for Arf and Rho signaling. Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, Resau J, Zheng Y, Randazzo PA. Mol Cell 9 109-119 (2002)
  16. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Park WS, Heo WD, Whalen JH, O'Rourke NA, Bryan HM, Meyer T, Teruel MN. Mol Cell 30 381-392 (2008)
  17. Protein lipid overlay assay. Dowler S, Kular G, Alessi DR. Sci STKE 2002 pl6 (2002)
  18. Imaging antigen-induced PI3K activation in T cells. Harriague J, Bismuth G. Nat Immunol 3 1090-1096 (2002)
  19. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C, Safrany ST, Alessi DR, van Aalten DM. EMBO J 23 3918-3928 (2004)
  20. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Prober DA, Edgar BA. Genes Dev 16 2286-2299 (2002)
  21. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Uchida Y, Hasegawa J, Chinnapen D, Inoue T, Okazaki S, Kato R, Wakatsuki S, Misaki R, Koike M, Uchiyama Y, Iemura S, Natsume T, Kuwahara R, Nakagawa T, Nishikawa K, Mukai K, Miyoshi E, Taniguchi N, Sheff D, Lencer WI, Taguchi T, Arai H. Proc Natl Acad Sci U S A 108 15846-15851 (2011)
  22. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Gray A, Olsson H, Batty IH, Priganica L, Peter Downes C. Anal Biochem 313 234-245 (2003)
  23. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG. Mol Cell 28 569-583 (2007)
  24. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T. Mol Cell 22 363-374 (2006)
  25. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT. EMBO J 24 2064-2074 (2005)
  26. Single molecule diffusion of membrane-bound proteins: window into lipid contacts and bilayer dynamics. Knight JD, Lerner MG, Marcano-Velázquez JG, Pastor RW, Falke JJ. Biophys J 99 2879-2887 (2010)
  27. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Fadri M, Daquinag A, Wang S, Xue T, Kunz J. Mol Biol Cell 16 1883-1900 (2005)
  28. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. Manna D, Albanese A, Park WS, Cho W. J Biol Chem 282 32093-32105 (2007)
  29. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Tiwari S, Choi HP, Matsuzawa T, Pypaert M, MacMicking JD. Nat Immunol 10 907-917 (2009)
  30. ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. Someya A, Sata M, Takeda K, Pacheco-Rodriguez G, Ferrans VJ, Moss J, Vaughan M. Proc Natl Acad Sci U S A 98 2413-2418 (2001)
  31. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C delta 1 and p130. Várnai P, Lin X, Lee SB, Tuymetova G, Bondeva T, Spät A, Rhee SG, Hajnóczky G, Balla T. J Biol Chem 277 27412-27422 (2002)
  32. Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. Hill K, Krugmann S, Andrews SR, Coadwell WJ, Finan P, Welch HC, Hawkins PT, Stephens LR. J Biol Chem 280 4166-4173 (2005)
  33. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains. Cronin TC, DiNitto JP, Czech MP, Lambright DG. EMBO J 23 3711-3720 (2004)
  34. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, Lucocq JM, Alessi DR. Biochem J 361 525-536 (2002)
  35. Structural and mechanistic insights into the association of PKCalpha-C2 domain to PtdIns(4,5)P2. Guerrero-Valero M, Ferrer-Orta C, Querol-Audí J, Marin-Vicente C, Fita I, Gómez-Fernández JC, Verdaguer N, Corbalán-García S. Proc Natl Acad Sci U S A 106 6603-6607 (2009)
  36. The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA. Mol Biol Cell 16 2218-2233 (2005)
  37. AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, Randazzo PA. J Biol Chem 277 48965-48975 (2002)
  38. Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE. J Biol Chem 283 26208-26216 (2008)
  39. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. J Cell Sci 124 879-891 (2011)
  40. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Knight JD, Falke JJ. Biophys J 96 566-582 (2009)
  41. Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. Ceccarelli DF, Blasutig IM, Goudreault M, Li Z, Ruston J, Pawson T, Sicheri F. J Biol Chem 282 13864-13874 (2007)
  42. A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. Hernandez CC, Zaika O, Shapiro MS. J Gen Physiol 132 361-381 (2008)
  43. An alpha-helical extension of the ELMO1 pleckstrin homology domain mediates direct interaction to DOCK180 and is critical in Rac signaling. Komander D, Patel M, Laurin M, Fradet N, Pelletier A, Barford D, Côté JF. Mol Biol Cell 19 4837-4851 (2008)
  44. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Thomas CC, Dowler S, Deak M, Alessi DR, van Aalten DM. Biochem J 358 287-294 (2001)
  45. TIPE3 is the transfer protein of lipid second messengers that promote cancer. Fayngerts SA, Wu J, Oxley CL, Liu X, Vourekas A, Cathopoulis T, Wang Z, Cui J, Liu S, Sun H, Lemmon MA, Zhang L, Shi Y, Chen YH. Cancer Cell 26 465-478 (2014)
  46. GRP1 pleckstrin homology domain: activation parameters and novel search mechanism for rare target lipid. Corbin JA, Dirkx RA, Falke JJ. Biochemistry 43 16161-16173 (2004)
  47. CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. Mallajosyula SS, Guvench O, Hatcher E, Mackerell AD. J Chem Theory Comput 8 759-776 (2012)
  48. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Gervais V, Lamour V, Jawhari A, Frindel F, Wasielewski E, Dubaele S, Egly JM, Thierry JC, Kieffer B, Poterszman A. Nat Struct Mol Biol 11 616-622 (2004)
  49. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. He J, Scott JL, Heroux A, Roy S, Lenoir M, Overduin M, Stahelin RV, Kutateladze TG. J Biol Chem 286 18650-18657 (2011)
  50. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Depetris RS, Wu J, Hubbard SR. Nat Struct Mol Biol 16 833-839 (2009)
  51. Phosphoinositide 3-kinase-dependent membrane recruitment of p62(dok) is essential for its negative effect on mitogen-activated protein (MAP) kinase activation. Zhao M, Schmitz AA, Qin Y, Di Cristofano A, Pandolfi PP, Van Aelst L. J Exp Med 194 265-274 (2001)
  52. Inhibition of Akt kinase activity by a peptide spanning the betaA strand of the proto-oncogene TCL1. Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C, Noguchi M. J Biol Chem 279 53407-53418 (2004)
  53. Myosin 1G is an abundant class I myosin in lymphocytes whose localization at the plasma membrane depends on its ancient divergent pleckstrin homology (PH) domain (Myo1PH). Patino-Lopez G, Aravind L, Dong X, Kruhlak MJ, Ostap EM, Shaw S. J Biol Chem 285 8675-8686 (2010)
  54. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Ziemba BP, Burke JE, Masson G, Williams RL, Falke JJ. Biophys J 110 1811-1825 (2016)
  55. Crystal structures of the BAR-PH and PTB domains of human APPL1. Li J, Mao X, Dong LQ, Liu F, Tong L. Structure 15 525-533 (2007)
  56. Inositol 1,3,4,5-tetrakisphosphate negatively regulates phosphatidylinositol-3,4,5- trisphosphate signaling in neutrophils. Jia Y, Subramanian KK, Erneux C, Pouillon V, Hattori H, Jo H, You J, Zhu D, Schurmans S, Luo HR. Immunity 27 453-467 (2007)
  57. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Alam SL, Langelier C, Whitby FG, Koirala S, Robinson H, Hill CP, Sundquist WI. Nat Struct Mol Biol 13 1029-1030 (2006)
  58. The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR, Koushika SP. PLoS Genet 6 e1001200 (2010)
  59. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M, Nielsen ML. Cell Rep 6 578-591 (2014)
  60. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ. Mol Cell Biol 23 2658-2668 (2003)
  61. Biophysical and computational studies of membrane penetration by the GRP1 pleckstrin homology domain. Lumb CN, He J, Xue Y, Stansfeld PJ, Stahelin RV, Kutateladze TG, Sansom MS. Structure 19 1338-1346 (2011)
  62. JNK-interacting protein 1 promotes Akt1 activation. Kim AH, Sasaki T, Chao MV. J Biol Chem 278 29830-29836 (2003)
  63. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Singh SM, Murray D. Protein Sci 12 1934-1953 (2003)
  64. Structural basis of membrane targeting by the Dock180 family of Rho family guanine exchange factors (Rho-GEFs). Premkumar L, Bobkov AA, Patel M, Jaroszewski L, Bankston LA, Stec B, Vuori K, Côté JF, Liddington RC. J Biol Chem 285 13211-13222 (2010)
  65. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Sondermann H, Nagar B, Bar-Sagi D, Kuriyan J. Proc Natl Acad Sci U S A 102 16632-16637 (2005)
  66. Interactions of Pleckstrin Homology Domains with Membranes: Adding Back the Bilayer via High-Throughput Molecular Dynamics. Yamamoto E, Kalli AC, Yasuoka K, Sansom MSP. Structure 24 1421-1431 (2016)
  67. Regulation of gephyrin assembly and glycine receptor synaptic stability. Bedet C, Bruusgaard JC, Vergo S, Groth-Pedersen L, Eimer S, Triller A, Vannier C. J Biol Chem 281 30046-30056 (2006)
  68. FGD2, a CDC42-specific exchange factor expressed by antigen-presenting cells, localizes to early endosomes and active membrane ruffles. Huber C, Mårtensson A, Bokoch GM, Nemazee D, Gavin AL. J Biol Chem 283 34002-34012 (2008)
  69. Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates. Auguin D, Barthe P, Augé-Sénégas MT, Stern MH, Noguchi M, Roumestand C. J Biomol NMR 28 137-155 (2004)
  70. Molecular mechanism of membrane binding of the GRP1 PH domain. Lai CL, Srivastava A, Pilling C, Chase AR, Falke JJ, Voth GA. J Mol Biol 425 3073-3090 (2013)
  71. Molecular mechanism of membrane targeting by the GRP1 PH domain. He J, Haney RM, Vora M, Verkhusha VV, Stahelin RV, Kutateladze TG. J Lipid Res 49 1807-1815 (2008)
  72. Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Denley A, Gymnopoulos M, Kang S, Mitchell C, Vogt PK. Mol Cancer Res 7 1132-1138 (2009)
  73. Structure-function study of the N-terminal domain of exocyst subunit Sec3. Baek K, Knödler A, Lee SH, Zhang X, Orlando K, Zhang J, Foskett TJ, Guo W, Dominguez R. J Biol Chem 285 10424-10433 (2010)
  74. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts. Steenblock C, Heckel T, Czupalla C, Espírito Santo AI, Niehage C, Sztacho M, Hoflack B. J Biol Chem 289 18347-18359 (2014)
  75. 3-D structure and dynamics of protein kinase B-new mechanism for the allosteric regulation of an AGC kinase. Calleja V, Laguerre M, Larijani B. J Chem Biol 2 11-25 (2009)
  76. Structural bioinformatics prediction of membrane-binding proteins. Bhardwaj N, Stahelin RV, Langlois RE, Cho W, Lu H. J Mol Biol 359 486-495 (2006)
  77. X-ray reflectivity studies of cPLA2{alpha}-C2 domains adsorbed onto Langmuir monolayers of SOPC. Málková S, Long F, Stahelin RV, Pingali SV, Murray D, Cho W, Schlossman ML. Biophys J 89 1861-1873 (2005)
  78. Cooperation of DEF6 with activated Rac in regulating cell morphology. Oka T, Ihara S, Fukui Y. J Biol Chem 282 2011-2018 (2007)
  79. The C-terminal basic tail of RhoG assists the guanine nucleotide exchange factor trio in binding to phospholipids. Skowronek KR, Guo F, Zheng Y, Nassar N. J Biol Chem 279 37895-37907 (2004)
  80. Association of Peripheral Membrane Proteins with Membranes: Free Energy of Binding of GRP1 PH Domain with Phosphatidylinositol Phosphate-Containing Model Bilayers. Naughton FB, Kalli AC, Sansom MS. J Phys Chem Lett 7 1219-1224 (2016)
  81. Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Kimber WA, Deak M, Prescott AR, Alessi DR. Biochem J 376 525-535 (2003)
  82. Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Del Campo CM, Mishra AK, Wang YH, Roy CR, Janmey PA, Lambright DG. Structure 22 397-408 (2014)
  83. Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Malaby AW, van den Berg B, Lambright DG. Proc Natl Acad Sci U S A 110 14213-14218 (2013)
  84. ARAP1 regulates EGF receptor trafficking and signalling. Daniele T, Di Tullio G, Santoro M, Turacchio G, De Matteis MA. Traffic 9 2221-2235 (2008)
  85. Structural basis of the myosin X PH1(N)-PH2-PH1(C) tandem as a specific and acute cellular PI(3,4,5)P(3) sensor. Lu Q, Yu J, Yan J, Wei Z, Zhang M. Mol Biol Cell 22 4268-4278 (2011)
  86. Structure and activation mechanism of the BBSome membrane protein trafficking complex. Singh SK, Gui M, Koh F, Yip MC, Brown A. Elife 9 e53322 (2020)
  87. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. Wen W, Liu W, Yan J, Zhang M. J Biol Chem 283 26263-26273 (2008)
  88. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1. Fleming IN, Batty IH, Prescott AR, Gray A, Kular GS, Stewart H, Downes CP. Biochem J 382 857-865 (2004)
  89. The B cell SH2/PH domain-containing adaptor Bam32/DAPP1 is required for T cell-independent II antigen responses. Fournier E, Isakoff SJ, Ko K, Cardinale CJ, Inghirami GG, Li Z, Curotto de Lafaille MA, Skolnik EY. Curr Biol 13 1858-1866 (2003)
  90. A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. Campa F, Yoon HY, Ha VL, Szentpetery Z, Balla T, Randazzo PA. J Biol Chem 284 28069-28083 (2009)
  91. Lipid-binding hSH3 domains in immune cell adapter proteins. Heuer K, Sylvester M, Kliche S, Pusch R, Thiemke K, Schraven B, Freund C. J Mol Biol 361 94-104 (2006)
  92. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. Lenoir M, Kufareva I, Abagyan R, Overduin M. Membranes (Basel) 5 646-663 (2015)
  93. SWAP-70 identifies a transitional subset of actin filaments in motile cells. Hilpelä P, Oberbanscheidt P, Hahne P, Hund M, Kalhammer G, Small JV, Bähler M. Mol Biol Cell 14 3242-3253 (2003)
  94. Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3. Wen W, Yan J, Zhang M. J Biol Chem 281 12060-12068 (2006)
  95. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain. Ni T, Kalli AC, Naughton FB, Yates LA, Naneh O, Kozorog M, Anderluh G, Sansom MS, Gilbert RJ. Biochem J 474 539-556 (2017)
  96. Crystal structure of the DH/PH fragment of Dbs without bound GTPase. Worthylake DK, Rossman KL, Sondek J. Structure 12 1078-1086 (2004)
  97. Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes. Yamamoto E, Domański J, Naughton FB, Best RB, Kalli AC, Stansfeld PJ, Sansom MSP. Sci Adv 6 eaay5736 (2020)
  98. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods. He F, Agosto MA, Anastassov IA, Tse DY, Wu SM, Wensel TG. Sci Rep 6 26978 (2016)
  99. Regulation of phosphoinositide 3-kinase signaling by oxidants: hydrogen peroxide selectively enhances immunoreceptor-induced recruitment of phosphatidylinositol (3,4) bisphosphate-binding PH domain proteins. Cheung SM, Kornelson JC, Al-Alwan M, Marshall AJ. Cell Signal 19 902-912 (2007)
  100. Structural basis for autoinhibition of the guanine nucleotide exchange factor FARP2. He X, Kuo YC, Rosche TJ, Zhang X. Structure 21 355-364 (2013)
  101. CARMIL family proteins as multidomain regulators of actin-based motility. Stark BC, Lanier MH, Cooper JA. Mol Biol Cell 28 1713-1723 (2017)
  102. Functional characterization of cancer-associated Gab1 mutations. Ortiz-Padilla C, Gallego-Ortega D, Browne BC, Hochgräfe F, Caldon CE, Lyons RJ, Croucher DR, Rickwood D, Ormandy CJ, Brummer T, Daly RJ. Oncogene 32 2696-2702 (2013)
  103. Structural and Biochemical Characterization of the Catalytic Core of the Metastatic Factor P-Rex1 and Its Regulation by PtdIns(3,4,5)P3. Cash JN, Davis EM, Tesmer JJG. Structure 24 730-740 (2016)
  104. Therapeutic Implications of Targeting AKT Signaling in Melanoma. Madhunapantula SV, Robertson GP. Enzyme Res 2011 327923 (2011)
  105. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells. Ghai R, Tello-Lafoz M, Norwood SJ, Yang Z, Clairfeuille T, Teasdale RD, Mérida I, Collins BM. J Cell Sci 128 553-565 (2015)
  106. Lineage-specific requirement for the PH domain of Vav1 in the activation of CD4+ but not CD8+ T cells. Prisco A, Vanes L, Ruf S, Trigueros C, Tybulewicz VL. Immunity 23 263-274 (2005)
  107. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity. Yamamoto E, Akimoto T, Kalli AC, Yasuoka K, Sansom MS. Sci Adv 3 e1601871 (2017)
  108. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Zwolak A, Yang C, Feeser EA, Ostap EM, Svitkina T, Dominguez R. Nat Commun 4 2523 (2013)
  109. Mutational analysis on the function of the SWAP-70 PH domain. Wakamatsu I, Ihara S, Fukui Y. Mol Cell Biochem 293 137-145 (2006)
  110. Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin. Edlich C, Stier G, Simon B, Sattler M, Muhle-Goll C. Structure 13 277-286 (2005)
  111. Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Guillou H, Lécureuil C, Anderson KE, Suire S, Ferguson GJ, Ellson CD, Gray A, Divecha N, Hawkins PT, Stephens LR. J Lipid Res 48 726-732 (2007)
  112. Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis. Agorio A, Giraudat J, Bianchi MW, Marion J, Espagne C, Castaings L, Lelièvre F, Curie C, Thomine S, Merlot S. Proc Natl Acad Sci U S A 114 E3354-E3363 (2017)
  113. A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature. Pang X, Fan J, Zhang Y, Zhang K, Gao B, Ma J, Li J, Deng Y, Zhou Q, Egelman EH, Hsu VW, Sun F. Dev Cell 31 73-86 (2014)
  114. Crystal structure of the pleckstrin homology domain from the ceramide transfer protein: implications for conformational change upon ligand binding. Prashek J, Truong T, Yao X. PLoS One 8 e79590 (2013)
  115. IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold. Dixon MJ, Gray A, Schenning M, Agacan M, Tempel W, Tong Y, Nedyalkova L, Park HW, Leslie NR, van Aalten DM, Downes CP, Batty IH. J Biol Chem 287 22483-22496 (2012)
  116. Membrane targeting: what a difference a G makes. Cullen PJ, Chardin P. Curr Biol 10 R876-8 (2000)
  117. The INPP4B Tumor Suppressor Modulates EGFR Trafficking and Promotes Triple-Negative Breast Cancer. Liu H, Paddock MN, Wang H, Murphy CJ, Geck RC, Navarro AJ, Wulf GM, Elemento O, Haucke V, Cantley LC, Toker A. Cancer Discov 10 1226-1239 (2020)
  118. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Xie J, Erneux C, Pirson I. Bioessays 35 733-743 (2013)
  119. Structural basis of dynamic membrane recognition by trans-Golgi network specific FAPP proteins. Lenoir M, Grzybek M, Majkowski M, Rajesh S, Kaur J, Whittaker SB, Coskun Ü, Overduin M. J Mol Biol 427 966-981 (2015)
  120. Conformational snapshots of Tec kinases during signaling. Joseph RE, Andreotti AH. Immunol Rev 228 74-92 (2009)
  121. Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. Pruitt WM, Karnoub AE, Rakauskas AC, Guipponi M, Antonarakis SE, Kurakin A, Kay BK, Sondek J, Siderovski DP, Der CJ. Biochim Biophys Acta 1640 61-68 (2003)
  122. Structural analysis of the carboxy terminal PH domain of pleckstrin bound to D-myo-inositol 1,2,3,5,6-pentakisphosphate. Jackson SG, Zhang Y, Haslam RJ, Junop MS. BMC Struct Biol 7 80 (2007)
  123. Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface. Yamamoto E, Kalli AC, Akimoto T, Yasuoka K, Sansom MS. Sci Rep 5 18245 (2015)
  124. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. Cozier GE, Bouyoucef D, Cullen PJ. J Biol Chem 278 39489-39496 (2003)
  125. Novel inhibitors induce large conformational changes of GAB1 pleckstrin homology domain and kill breast cancer cells. Chen L, Du-Cuny L, Moses S, Dumas S, Song Z, Rezaeian AH, Lin HK, Meuillet EJ, Zhang S. PLoS Comput Biol 11 e1004021 (2015)
  126. PHR1, a PH domain-containing protein expressed in primary sensory neurons. Xu S, Wang Y, Zhao H, Zhang L, Xiong W, Yau KW, Hiel H, Glowatzki E, Ryugo DK, Valle D. Mol Cell Biol 24 9137-9151 (2004)
  127. Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site. Anand K, Maeda K, Gavin AC. PLoS One 7 e36526 (2012)
  128. A screen for novel phosphoinositide 3-kinase effector proteins. Dixon MJ, Gray A, Boisvert FM, Agacan M, Morrice NA, Gourlay R, Leslie NR, Downes CP, Batty IH. Mol Cell Proteomics 10 M110.003178 (2011)
  129. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica. Dowd GC, Bhalla M, Kean B, Thomas R, Ireton K. Infect Immun 84 1826-1841 (2016)
  130. Specificity of Collybistin-Phosphoinositide Interactions: IMPACT OF THE INDIVIDUAL PROTEIN DOMAINS. Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, Schindelin H, Steinem C. J Biol Chem 291 244-254 (2016)
  131. Signal transduction mechanism of TRB3 in rats with non-alcoholic fatty liver disease. Wang YG, Shi M, Wang T, Shi T, Wei J, Wang N, Chen XM. World J Gastroenterol 15 2329-2335 (2009)
  132. Structural basis for the association of PLEKHA7 with membrane-embedded phosphatidylinositol lipids. Aleshin AE, Yao Y, Iftikhar A, Bobkov AA, Yu J, Cadwell G, Klein MG, Dong C, Bankston LA, Liddington RC, Im W, Powis G, Marassi FM. Structure 29 1029-1039.e3 (2021)
  133. 5-Stabilized phosphatidylinositol 3,4,5-trisphosphate analogues bind Grp1 PH, inhibit phosphoinositide phosphatases, and block neutrophil migration. Zhang H, He J, Kutateladze TG, Sakai T, Sasaki T, Markadieu N, Erneux C, Prestwich GD. Chembiochem 11 388-395 (2010)
  134. A Legionella effector kinase is activated by host inositol hexakisphosphate. Sreelatha A, Nolan C, Park BC, Pawłowski K, Tomchick DR, Tagliabracci VS. J Biol Chem 295 6214-6224 (2020)
  135. Crystal structure of the Bruton's tyrosine kinase PH domain with phosphatidylinositol. Murayama K, Kato-Murayama M, Mishima C, Akasaka R, Shirouzu M, Fukui Y, Yokoyama S. Biochem Biophys Res Commun 377 23-28 (2008)
  136. Synergistic activation of p21-activated kinase 1 by phosphatidylinositol 4,5-bisphosphate and Rho GTPases. Malecka KA, Szentpetery Z, Peterson JR. J Biol Chem 288 8887-8897 (2013)
  137. Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. Jackson SG, Al-Saigh S, Schultz C, Junop MS. BMC Struct Biol 11 11 (2011)
  138. Split pleckstrin homology domain-mediated cytoplasmic-nuclear localization of PI3-kinase enhancer GTPase. Yan J, Wen W, Chan LN, Zhang M. J Mol Biol 378 425-435 (2008)
  139. Tec kinase migrates to the T cell-APC interface independently of its pleckstrin homology domain. Garçon F, Bismuth G, Isnardon D, Olive D, Nunès JA. J Immunol 173 770-775 (2004)
  140. The inner membrane complex sub-compartment proteins critical for replication of the apicomplexan parasite Toxoplasma gondii adopt a pleckstrin homology fold. Tonkin ML, Beck JR, Bradley PJ, Boulanger MJ. J Biol Chem 289 13962-13973 (2014)
  141. Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us? Larsen AH, John LH, Sansom MSP, Corey RA. Biosci Rep 42 BSR20211406 (2022)
  142. Systematic simulation of the interactions of pleckstrin homology domains with membranes. Le Huray KIP, Wang H, Sobott F, Kalli AC. Sci Adv 8 eabn6992 (2022)
  143. An in vivo fluorescent sensor reveals intracellular ins(1,3,4,5)P4 dynamics in single cells. Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T. Angew Chem Int Ed Engl 49 2150-2153 (2010)
  144. Letter Cytohesins and centaurins: mediators of PI 3-kinase regulated Arf signaling. Randazzo PA, Miura K, Nie Z, Orr A, Theibert AB, Kearns BG. Trends Biochem Sci 26 220-221 (2001)
  145. PI3K-Akt Signal Transduction Molecules Maybe Involved in Downregulation of Erythroblasts Apoptosis and Perifosine Increased Its Apoptosis in Chronic Mountain Sickness. Zhao C, Li Z, Ji L, Ma J, Ge RL, Cui S. Med Sci Monit 23 5637-5649 (2017)
  146. Structural Organization and Dynamics of Homodimeric Cytohesin Family Arf GTPase Exchange Factors in Solution and on Membranes. Das S, Malaby AW, Nawrotek A, Zhang W, Zeghouf M, Maslen S, Skehel M, Chakravarthy S, Irving TC, Bilsel O, Cherfils J, Lambright DG. Structure 27 1782-1797.e7 (2019)
  147. The cytohesin paralog Sec7 of Dictyostelium discoideum is required for phagocytosis and cell motility. Müller R, Herr C, Sukumaran SK, Omosigho NN, Plomann M, Riyahi TY, Stumpf M, Swaminathan K, Tsangarides M, Yiannakou K, Blau-Wasser R, Gallinger C, Schleicher M, Kolanus W, Noegel AA. Cell Commun Signal 11 54 (2013)
  148. Structural determinants of RGS-RhoGEF signaling critical to Entamoeba histolytica pathogenesis. Bosch DE, Kimple AJ, Manning AJ, Muller RE, Willard FS, Machius M, Rogers SL, Siderovski DP. Structure 21 65-75 (2013)
  149. Synthesis of an inositol hexakisphosphate (IP6) affinity probe to study the interactome from a colon cancer cell line. Yin MX, Catimel B, Gregory M, Condron M, Kapp E, Holmes AB, Burgess AW. Integr Biol (Camb) 8 309-318 (2016)
  150. Cyplecksins are covalent inhibitors of the pleckstrin homology domain of cytohesin. Hussein M, Bettio M, Schmitz A, Hannam JS, Theis J, Mayer G, Dosa S, Gütschow M, Famulok M. Angew Chem Int Ed Engl 52 9529-9533 (2013)
  151. Metabolically stabilized derivatives of phosphatidylinositol 4-phosphate: synthesis and applications. He J, Gajewiak J, Scott JL, Gong D, Ali M, Best MD, Prestwich GD, Stahelin RV, Kutateladze TG. Chem Biol 18 1312-1319 (2011)
  152. Molecular Dissection of Neurobeachin Function at Excitatory Synapses. Repetto D, Brockhaus J, Rhee HJ, Lee C, Kilimann MW, Rhee J, Northoff LM, Guo W, Reissner C, Missler M. Front Synaptic Neurosci 10 28 (2018)
  153. Role of PTEN in modulation of ADP-dependent signaling pathways in vascular endothelial cells. Bretón-Romero R, Kalwa H, Lamas S, Michel T. Biochim Biophys Acta 1833 2586-2595 (2013)
  154. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors. Malaby AW, Das S, Chakravarthy S, Irving TC, Bilsel O, Lambright DG. Structure 26 106-117.e6 (2018)
  155. Structural insights into the activation of the RhoA GTPase by the lymphoid blast crisis (Lbc) oncoprotein. Lenoir M, Sugawara M, Kaur J, Ball LJ, Overduin M. J Biol Chem 289 23992-24004 (2014)
  156. The Binding Mechanism Between Inositol Phosphate (InsP) and the Jasmonate Receptor Complex: A Computational Study. Cui M, Du J, Yao X. Front Plant Sci 9 963 (2018)
  157. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif. Leader DP, Milner-White EJ. Proteins 83 2067-2076 (2015)
  158. Functional characterization of the pleckstrin homology domain of a cellulose synthase from the oomycete Saprolegnia monoica. Fugelstad J, Brown C, Hukasova E, Sundqvist G, Lindqvist A, Bulone V. Biochem Biophys Res Commun 417 1248-1253 (2012)
  159. General receptor for phosphoinositides 1, a novel repressor of thyroid hormone receptor action that prevents deoxyribonucleic acid binding. Poirier MB, Hamann G, Domingue ME, Roy M, Bardati T, Langlois MF. Mol Endocrinol 19 1991-2005 (2005)
  160. Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mazloumi Gavgani F, Slinning MS, Morovicz AP, Arnesen VS, Turcu DC, Ninzima S, D'Santos CS, Lewis AE. Mol Cell Proteomics 20 100102 (2021)
  161. Structure of the tandem PX-PH domains of Bem3 from Saccharomyces cerevisiae. Ali I, Eu S, Koch D, Bleimling N, Goody RS, Müller MP. Acta Crystallogr F Struct Biol Commun 74 315-321 (2018)
  162. A structure-based protocol for learning the family-specific mechanisms of membrane-binding domains. Källberg M, Bhardwaj N, Langlois R, Lu H. Bioinformatics 28 i431-i437 (2012)
  163. Aromatic amino acids and their relevance in the specificity of the PH domain. Morales J, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. J Mol Recognit 30 (2017)
  164. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P₃ with the pleckstrin homology domain of an oomycete cellulose synthase. Kuang G, Bulone V, Tu Y. Sci Rep 6 20555 (2016)
  165. Phospholipid binding to the FAK catalytic domain impacts function. Hall JE, Schaller MD. PLoS One 12 e0172136 (2017)
  166. Two cooperative binding sites sensitize PI(4,5)P2 recognition by the tubby domain. Thallmair V, Schultz L, Zhao W, Marrink SJ, Oliver D, Thallmair S. Sci Adv 8 eabp9471 (2022)
  167. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion. Lete MG, Byrne RD, Alonso A, Poccia D, Larijani B. J Cell Sci 130 444-452 (2017)
  168. Coordination of Grp1 recruitment mechanisms by its phosphorylation. Li J, Lambright DG, Hsu VW. Mol Biol Cell 31 2816-2825 (2020)
  169. Elucidation of different inhibition mechanism of small chemicals on PtdInsP-binding domains using in silico docking experiments. Kim Y, Yoon Y. Bioorg Med Chem Lett 24 2256-2262 (2014)
  170. Gossypium hirsutum gene of unknown function Gohir.A03G007700.1 encodes a potential VAN3-binding protein with a phosphoinositide-binding site. Smith ER, Caulley LR, Storm AR, Hulse-Kemp AM, Stoeckman AK. MicroPubl Biol 2023 (2023)
  171. FERM domains recruit ample PI(4,5)P2s to form extensive protein-membrane attachments. Ehret T, Heißenberg T, de Buhr S, Aponte-Santamaría C, Steinem C, Gräter F. Biophys J 122 1325-1333 (2023)
  172. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism. Gao J, Zhang M, Zu X, Gu X, Hao E, Hou X, Bai G. Chin Herb Med 15 398-406 (2023)
  173. News Pocket the difference. Brooksbank C. Nat Rev Mol Cell Biol 1 9 (2000)
  174. Secondary structure and 1H, 13C, 15N resonance assignments of the Golgi-specific PH domain of FAPP1. Lenoir M, Whittaker SB, Overduin M. Biomol NMR Assign 5 185-187 (2011)
  175. Sequence-specific 1H, 13C, and 15N resonance assignments of GRP1 PH domain. He J, Kutateladze TG. Biomol NMR Assign 2 97-99 (2008)