1f9f Citations

The structural basis of DNA target discrimination by papillomavirus E2 proteins.

J Biol Chem 275 31245-54 (2000)
Cited: 66 times
EuropePMC logo PMID: 10906136

Abstract

The papillomavirus E2 proteins regulate the transcription of all papillomavirus genes and are necessary for viral DNA replication. Disruption of the E2 gene is commonly associated with malignancy in cervical carcinoma, indicating that E2 has a role in regulating tumor progression. Although the E2 proteins from all characterized papillomaviruses bind specifically to the same 12-base pair DNA sequence, the cancer-associated human papillomavirus E2 proteins display a unique ability to detect DNA flexibility and intrinsic curvature. To understand the structural basis for this phenomenon, we have determined the crystal structures of the human papillomavirus-18 E2 DNA-binding domain and its complexes with high and low affinity binding sites. The E2 protein is a dimeric beta-barrel and the E2-DNA interaction is accompanied by a large deformation of the DNA as it conforms to the E2 surface. DNA conformation and E2-DNA contacts are similar in both high and low affinity complexes. The differences in affinity correlate with the flexibility of the DNA sequence. Preferences of E2 proteins from different papillomavirus strains for flexible or prevent DNA targets correlate with the distribution of positive charge on their DNA interaction surfaces, suggesting a role for electrostatic forces in the recognition of DNA deformability.

Reviews - 1f9f mentioned but not cited (2)

  1. Evolutionary and biophysical relationships among the papillomavirus E2 proteins. Blakaj DM, Fernandez-Fuentes N, Chen Z, Hegde R, Fiser A, Burk RD, Brenowitz M. Front Biosci (Landmark Ed) 14 900-917 (2009)
  2. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. Ou HD, May AP, O'Shea CC. Wiley Interdiscip Rev Syst Biol Med 3 48-73 (2011)

Articles - 1f9f mentioned but not cited (7)

  1. A protein-DNA docking benchmark. van Dijk M, Bonvin AM. Nucleic Acids Res 36 e88 (2008)
  2. Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein. Abroi A, Ilves I, Kivi S, Ustav M. J Virol 78 2100-2113 (2004)
  3. Benchmarks for flexible and rigid transcription factor-DNA docking. Kim R, Corona RI, Hong B, Guo JT. BMC Struct Biol 11 45 (2011)
  4. Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA. Bartas M, Volná A, Beaudoin CA, Poulsen ET, Červeň J, Brázda V, Špunda V, Blundell TL, Pečinka P. Brief Bioinform 23 bbac045 (2022)
  5. Local conformational changes in the DNA interfaces of proteins. Sunami T, Kono H. PLoS One 8 e56080 (2013)
  6. New human papilloma virus E2 transcription factor mimics: a tripyrrole-peptide conjugate with tight and specific DNA-recognition. Wetzler DE, Comin MJ, Krajewski K, Gallo M. PLoS One 6 e22409 (2011)
  7. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter. Gao C, Pan MM, Lei YJ, Tian LQ, Jiang HY, Li XL, Shi Q, Tian C, Yuan YK, Fan GX, Dong XP. BMC Mol Biol 13 5 (2012)


Reviews citing this publication (9)

  1. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  2. The papillomavirus E2 proteins. McBride AA. Virology 445 57-79 (2013)
  3. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Hebner CM, Laimins LA. Rev Med Virol 16 83-97 (2006)
  4. The papillomavirus E2 proteins: structure, function, and biology. Hegde RS. Annu Rev Biophys Biomol Struct 31 343-360 (2002)
  5. The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Lindner SE, Sugden B. Plasmid 58 1-12 (2007)
  6. Replication of Epstein-Barr viral DNA. Hammerschmidt W, Sugden B. Cold Spring Harb Perspect Biol 5 a013029 (2013)
  7. Drugging challenging targets using fragment-based approaches. Coyne AG, Scott DE, Abell C. Curr Opin Chem Biol 14 299-307 (2010)
  8. Involvement of Brd4 in different steps of the papillomavirus life cycle. Iftner T, Haedicke-Jarboui J, Wu SY, Chiang CM. Virus Res 231 76-82 (2017)
  9. The regulatory E2 proteins of human genital papillomaviruses are pro-apoptotic. Blachon S, Demeret C. Biochimie 85 813-819 (2003)

Articles citing this publication (48)

  1. DNA bending by an adenine--thymine tract and its role in gene regulation. Hizver J, Rozenberg H, Frolow F, Rabinovich D, Shakked Z. Proc Natl Acad Sci U S A 98 8490-8495 (2001)
  2. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions. Gao M, Skolnick J. Nucleic Acids Res 36 3978-3992 (2008)
  3. Predicting indirect readout effects in protein-DNA interactions. Zhang Y, Xi Z, Hegde RS, Shakked Z, Crothers DM. Proc Natl Acad Sci U S A 101 8337-8341 (2004)
  4. A structural basis for the assembly and functions of a viral polymer that inactivates multiple tumor suppressors. Ou HD, Kwiatkowski W, Deerinck TJ, Noske A, Blain KY, Land HS, Soria C, Powers CJ, May AP, Shu X, Tsien RY, Fitzpatrick JA, Long JA, Ellisman MH, Choe S, O'Shea CC. Cell 151 304-319 (2012)
  5. Insights into protein-protein interfaces using a Bayesian network prediction method. Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR. J Mol Biol 362 365-386 (2006)
  6. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression. Wu SY, Nin DS, Lee AY, Simanski S, Kodadek T, Chiang CM. Cell Rep 16 1733-1748 (2016)
  7. Structural and energetic origins of sequence-specific DNA bending: Monte Carlo simulations of papillomavirus E2-DNA binding sites. Rohs R, Sklenar H, Shakked Z. Structure 13 1499-1509 (2005)
  8. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS. Structure 10 787-795 (2002)
  9. Bending and flexibility of methylated and unmethylated EcoRI DNA. Nathan D, Crothers DM. J Mol Biol 316 7-17 (2002)
  10. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Nucleic Acids Res 41 6750-6760 (2013)
  11. Human papillomavirus type 18 variant lineages in United States populations characterized by sequence analysis of LCR-E6, E2, and L1 regions. Arias-Pulido H, Peyton CL, Torrez-Martínez N, Anderson DN, Wheeler CM. Virology 338 22-34 (2005)
  12. Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance. van Dijk M, Bonvin AM. Nucleic Acids Res 38 5634-5647 (2010)
  13. A protein-DNA binding mechanism proceeds through multi-state or two-state parallel pathways. Ferreiro DU, de Prat-Gay G. J Mol Biol 331 89-99 (2003)
  14. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Su TJ, Tock MR, Egelhaaf SU, Poon WC, Dryden DT. Nucleic Acids Res 33 3235-3244 (2005)
  15. Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics. Sánchez IE, Dellarole M, Gaston K, de Prat Gay G. Nucleic Acids Res 36 756-769 (2008)
  16. Virological characteristics of cervical cancers carrying pure episomal form of HPV16 genome. Cheung JL, Cheung TH, Yu MY, Chan PK. Gynecol Oncol 131 374-379 (2013)
  17. Comparison of the structure and DNA-binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus. Dell G, Wilkinson KW, Tranter R, Parish J, Leo Brady R, Gaston K. J Mol Biol 334 979-991 (2003)
  18. Inhibition of human papilloma virus E2 DNA binding protein by covalently linked polyamides. Schaal TD, Mallet WG, McMinn DL, Nguyen NV, Sopko MM, John S, Parekh BS. Nucleic Acids Res 31 1282-1291 (2003)
  19. Transition state for protein-DNA recognition. Ferreiro DU, Sánchez IE, de Prat Gay G. Proc Natl Acad Sci U S A 105 10797-10802 (2008)
  20. Molecular dynamics studies on free and bound targets of the bovine papillomavirus type I e2 protein: the protein binding effect on DNA and the recognition mechanism. Djuranovic D, Hartmann B. Biophys J 89 2542-2551 (2005)
  21. Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites. Curuksu J, Zakrzewska K, Zacharias M. Nucleic Acids Res 36 2268-2283 (2008)
  22. Letter Solution structure of the HPV-16 E2 DNA binding domain, a transcriptional regulator with a dimeric beta-barrel fold. Nadra AD, Eliseo T, Mok YK, Almeida CL, Bycroft M, Paci M, de Prat-Gay G, Cicero DO. J Biomol NMR 30 211-214 (2004)
  23. The role of DNA structure and dynamics in the recognition of bovine papillomavirus E2 protein target sequences. Djuranovic D, Oguey C, Hartmann B. J Mol Biol 339 785-796 (2004)
  24. Identification and analysis of papillomavirus E2 protein binding sites in the human genome. Võsa L, Sudakov A, Remm M, Ustav M, Kurg R. J Virol 86 348-357 (2012)
  25. Molecular dynamics simulations of papilloma virus E2 DNA sequences: dynamical models for oligonucleotide structures in solution. Byun KS, Beveridge DL. Biopolymers 73 369-379 (2004)
  26. Indirect readout of DNA sequence by papillomavirus E2 proteins depends upon net cation uptake. Blakaj DM, Kattamuri C, Khrapunov S, Hegde RS, Brenowitz M. J Mol Biol 358 224-240 (2006)
  27. Characterization of the nuclear localization signal of high risk HPV16 E2 protein. Klucevsek K, Wertz M, Lucchi J, Leszczynski A, Moroianu J. Virology 360 191-198 (2007)
  28. Solution measurement of DNA curvature in papillomavirus E2 binding sites. Zimmerman JM, Maher LJ. Nucleic Acids Res 31 5134-5139 (2003)
  29. The recognition of local DNA conformation by the human papillomavirus type 6 E2 protein. Hooley E, Fairweather V, Clarke AR, Gaston K, Brady RL. Nucleic Acids Res 34 3897-3908 (2006)
  30. Indirect DNA readout on the protein side: coupling between histidine protonation, global structural cooperativity, dynamics, and DNA binding of the human papillomavirus type 16 E2C domain. Eliseo T, Sánchez IE, Nadra AD, Dellarole M, Paci M, de Prat Gay G, Cicero DO. J Mol Biol 388 327-344 (2009)
  31. Accurate modeling of DNA conformational flexibility by a multivariate Ising model. Liebl K, Zacharias M. Proc Natl Acad Sci U S A 118 e2021263118 (2021)
  32. Human Papillomavirus Type 18 cis-Elements Crucial for Segregation and Latency. Ustav M, Castaneda FR, Reinson T, Männik A, Ustav M. PLoS One 10 e0135770 (2015)
  33. Orientation of a novel DNA binding site affects human papillomavirus-mediated transcription and replication. Newhouse CD, Silverstein SJ. J Virol 75 1722-1735 (2001)
  34. Structural and biochemical insights into the DNA-binding mode of MjSpt4p:Spt5 complex at the exit tunnel of RNAPII. Guo G, Gao Y, Zhu Z, Zhao D, Liu Z, Zhou H, Niu L, Teng M. J Struct Biol 192 418-425 (2015)
  35. MD simulations of papillomavirus DNA-E2 protein complexes hints at a protein structural code for DNA deformation. Falconi M, Oteri F, Eliseo T, Cicero DO, Desideri A. Biophys J 95 1108-1117 (2008)
  36. A strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation. Wetzler DE, Gallo M, Melis R, Eliseo T, Nadra AD, Ferreiro DU, Paci M, Sánchez IE, Cicero DO, de Prat Gay G. Biopolymers 91 432-443 (2009)
  37. E2 protein is the major determinant of specificity at the human papillomavirus origin of replication. Laaneväli A, Ustav M, Ustav E, Piirsoo M. PLoS One 14 e0224334 (2019)
  38. High Levels of Within-Host Variations of Human Papillomavirus 16 E1/E2 Genes in Invasive Cervical Cancer. Hirose Y, Yamaguchi-Naka M, Onuki M, Tenjimbayashi Y, Tasaka N, Satoh T, Tanaka K, Iwata T, Sekizawa A, Matsumoto K, Kukimoto I. Front Microbiol 11 596334 (2020)
  39. Specificity in DNA recognition by a peptide from papillomavirus E2 protein. Faber-Barata J, Mohana-Borges R, Lima LM. FEBS Lett 580 1919-1924 (2006)
  40. Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Dellarole M, Sánchez IE, de Prat Gay G. Biochemistry 49 10277-10286 (2010)
  41. Parallels between DNA and collagen - comparing elastic models of the double and triple helix. Xu F, Zheng H, Clauvelin N, Lu XJ, Olson WK, Nanda V. Sci Rep 7 12802 (2017)
  42. Antibody response to a viral transcriptional regulator. Cerutti ML, Centeno JM, de Prat-Gay G, Goldbaum FA. FEBS Lett 534 202-206 (2003)
  43. Characterization of the papillomavirus alpha(1)E2 peptide unfolded to folded transition upon DNA binding. Giesel GM, Lima LM, Faber-Barata J, Guimarães JA, Verli H. FEBS Lett 582 3619-3624 (2008)
  44. Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATA. Xi Z, Zhang Y, Hegde RS, Shakked Z, Crothers DM. Nucleic Acids Res 38 3827-3833 (2010)
  45. Design and characterization of an enhanced repressor of human papillomavirus E2 protein. Bose K, Meinke G, Bohm A, Baleja JD. FASEB J 25 2354-2361 (2011)
  46. Structural predictions of protein-DNA binding: MELD-DNA. Esmaeeli R, Bauzá A, Perez A. Nucleic Acids Res 51 1625-1636 (2023)
  47. Assessing protein stability of the dimeric DNA-binding domain of E2 human papillomavirus 18 with molecular dynamics. Isea R, Ramírez JL, Hoebeke J. Mem Inst Oswaldo Cruz 105 123-126 (2010)
  48. Correlated motions in DNA: beyond base-pair step models of DNA flexibility. López-Güell K, Battistini F, Orozco M. Nucleic Acids Res 51 2633-2640 (2023)