1f71 Citations

Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings.

J Biomol NMR 18 217-27 (2000)
Cited: 63 times
EuropePMC logo PMID: 11142512

Abstract

For an increasing fraction of proteins whose structures are being studied, sequence homology to known structures permits building of low resolution structural models. It is demonstrated that dipolar couplings, measured in a liquid crystalline medium, not only can validate such structural models, but also refine them. Here, experimental 1H-15N, 1Halpha-13Calpha, and 13C'-13Calpha dipolar couplings are shown to decrease the backbone rmsd between various homology models of calmodulin (CaM) and its crystal structure. Starting from a model of the Ca2+-saturated C-terminal domain of CaM, built from the structure of Ca2+-free recoverin on the basis of remote sequence homology, dipolar couplings are used to decrease the rmsd between the model and the crystal structure from 5.0 to 1.25 A. A better starting model, built from the crystal structure of Ca2+-saturated parvalbumin, decreases in rmsd from 1.25 to 0.93 A. Similarly, starting from the structure of the Ca2+-ligated CaM N-terminal domain, experimental dipolar couplings measured for the Ca2+-free form decrease the backbone rmsd relative to the refined solution structure of apo-CaM from 4.2 to 1.0 A.

Articles - 1f71 mentioned but not cited (4)



Reviews citing this publication (8)

  1. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Bax A. Protein Sci 12 1-16 (2003)
  2. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design. Oldfield E. Annu Rev Phys Chem 53 349-378 (2002)
  3. Dipolar couplings as a probe of molecular dynamics and structure in solution. Tolman JR. Curr Opin Struct Biol 11 532-539 (2001)
  4. The catalytic domain of MMP-1 studied through tagged lanthanides. Bertini I, Calderone V, Cerofolini L, Fragai M, Geraldes CF, Hermann P, Luchinat C, Parigi G, Teixeira JM. FEBS Lett 586 557-567 (2012)
  5. Theoretical and computational advances in biomolecular NMR spectroscopy. Clore GM, Schwieters CD. Curr Opin Struct Biol 12 146-153 (2002)
  6. The present and future of solution NMR in investigating the structure and dynamics of channels and transporters. Oxenoid K, Chou JJ. Curr Opin Struct Biol 23 547-554 (2013)
  7. Applications of NMR to structure-based drug design in structural genomics. Powers R. J Struct Funct Genomics 2 113-123 (2002)
  8. Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Shalev DE. Int J Mol Sci 23 15957 (2022)

Articles citing this publication (51)

  1. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Oxenoid K, Chou JJ. Proc Natl Acad Sci U S A 102 10870-10875 (2005)
  2. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Vallurupalli P, Hansen DF, Kay LE. Proc Natl Acad Sci U S A 105 11766-11771 (2008)
  3. A closed compact structure of native Ca(2+)-calmodulin. Fallon JL, Quiocho FA. Structure 11 1303-1307 (2003)
  4. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. Evenäs J, Tugarinov V, Skrynnikov NR, Goto NK, Muhandiram R, Kay LE. J Mol Biol 309 961-974 (2001)
  5. Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning. Luca S, Filippov DV, van Boom JH, Oschkinat H, de Groot HJ, Baldus M. J Biomol NMR 20 325-331 (2001)
  6. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Wei RR, Schnell JR, Larsen NA, Sorger PK, Chou JJ, Harrison SC. Structure 14 1003-1009 (2006)
  7. Paramagnetism-based restraints for Xplor-NIH. Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G. J Biomol NMR 28 249-261 (2004)
  8. Structural basis of the day-night transition in a bacterial circadian clock. Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL. Science 355 1174-1180 (2017)
  9. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Teriete P, Franzin CM, Choi J, Marassi FM. Biochemistry 46 6774-6783 (2007)
  10. An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Simon B, Madl T, Mackereth CD, Nilges M, Sattler M. Angew Chem Int Ed Engl 49 1967-1970 (2010)
  11. Perspectives in paramagnetic NMR of metalloproteins. Bertini I, Luchinat C, Parigi G, Pierattelli R. Dalton Trans 3782-3790 (2008)
  12. A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation. Erbil WK, Price MS, Wemmer DE, Marletta MA. Proc Natl Acad Sci U S A 106 19753-19760 (2009)
  13. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR. Goto NK, Skrynnikov NR, Dahlquist FW, Kay LE. J Mol Biol 308 745-764 (2001)
  14. Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Park SH, Marassi FM, Black D, Opella SJ. Biophys J 99 1465-1474 (2010)
  15. Atomic structures of peptide self-assembly mimics. Makabe K, McElheny D, Tereshko V, Hilyard A, Gawlak G, Yan S, Koide A, Koide S. Proc Natl Acad Sci U S A 103 17753-17758 (2006)
  16. NMR and small-angle scattering-based structural analysis of protein complexes in solution. Madl T, Gabel F, Sattler M. J Struct Biol 173 472-482 (2011)
  17. Building native protein conformation from highly approximate backbone torsion angles. Gong H, Fleming PJ, Rose GD. Proc Natl Acad Sci U S A 102 16227-16232 (2005)
  18. Solution structure of (gamma)S-crystallin by molecular fragment replacement NMR. Wu Z, Delaglio F, Wyatt K, Wistow G, Bax A. Protein Sci 14 3101-3114 (2005)
  19. An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. Langmead CJ, Donald BR. J Biomol NMR 29 111-138 (2004)
  20. Fast methionine-based solution structure determination of calcium-calmodulin complexes. Gifford JL, Ishida H, Vogel HJ. J Biomol NMR 50 71-81 (2011)
  21. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ. Protein Sci 14 2421-2428 (2005)
  22. Accurate measurement of small spin-spin couplings in partially aligned molecules using a novel J-mismatch compensated spin-state-selection filter. Brutscher B. J Magn Reson 151 332-338 (2001)
  23. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. RNA 13 521-535 (2007)
  24. The solution structure of EMILIN1 globular C1q domain reveals a disordered insertion necessary for interaction with the alpha4beta1 integrin. Verdone G, Doliana R, Corazza A, Colebrooke SA, Spessotto P, Bot S, Bucciotti F, Capuano A, Silvestri A, Viglino P, Campbell ID, Colombatti A, Esposito G. J Biol Chem 283 18947-18956 (2008)
  25. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. Chu BC, Otten R, Krewulak KD, Mulder FA, Vogel HJ. J Biol Chem 289 29219-29234 (2014)
  26. Structural basis for the activation of platelet integrin αIIbβ3 by calcium- and integrin-binding protein 1. Huang H, Vogel HJ. J Am Chem Soc 134 3864-3872 (2012)
  27. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. Gifford JL, Ishida H, Vogel HJ. J Biol Chem 287 26513-26527 (2012)
  28. Exact solutions for chemical bond orientations from residual dipolar couplings. Wedemeyer WJ, Rohl CA, Scherag HA. J Biomol NMR 22 137-151 (2002)
  29. A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints. Gabel F, Simon B, Sattler M. Eur Biophys J 35 313-327 (2006)
  30. Reactive cysteine in the structural Zn(2+) site of the C1B domain from PKCα. Stewart MD, Igumenova TI. Biochemistry 51 7263-7277 (2012)
  31. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. Langmead CJ, Yan A, Lilien R, Wang L, Donald BR. J Comput Biol 11 277-298 (2004)
  32. Solution structure of the DNA-binding domain of RPA from Saccharomyces cerevisiae and its interaction with single-stranded DNA and SV40 T antigen. Park CJ, Lee JH, Choi BS. Nucleic Acids Res 33 4172-4181 (2005)
  33. Solution structures of Ca2+-CIB1 and Mg2+-CIB1 and their interactions with the platelet integrin alphaIIb cytoplasmic domain. Huang H, Ishida H, Yamniuk AP, Vogel HJ. J Biol Chem 286 17181-17192 (2011)
  34. An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein. González-Andrade M, Figueroa M, Rodríguez-Sotres R, Mata R, Sosa-Peinado A. Anal Biochem 387 64-70 (2009)
  35. Probing Zn2+-binding effects on the zinc-ribbon domain of human general transcription factor TFIIB. Ghosh M, Elsby LM, Mal TK, Gooding JM, Roberts SG, Ikura M. Biochem J 378 317-324 (2004)
  36. Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ. Chu BC, DeWolf T, Vogel HJ. J Biol Chem 288 31409-31422 (2013)
  37. Use of residual dipolar couplings as restraints in ab initio protein structure prediction. Haliloglu T, Kolinski A, Skolnick J. Biopolymers 70 548-562 (2003)
  38. Protein structure similarity from Principle Component Correlation analysis. Zhou X, Chou J, Wong ST. BMC Bioinformatics 7 40 (2006)
  39. Structure-independent cross-validation between residual dipolar couplings originating from internal and external orienting media. Barbieri R, Bertini I, Lee YM, Luchinat C, Velders AH. J Biomol NMR 22 365-368 (2002)
  40. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1. Verdone G, Corazza A, Colebrooke SA, Cicero D, Eliseo T, Boyd J, Doliana R, Fogolari F, Viglino P, Colombatti A, Campbell ID, Esposito G. J Biomol NMR 43 79-96 (2009)
  41. A novel strategy to determine protein structures using exclusively residual dipolar coupling. Rathinavelan T, Im W. J Comput Chem 29 1640-1649 (2008)
  42. Simultaneous measurement of protein one-bond residual dipolar couplings without increased resonance overlap. Vijayan V, Zweckstetter M. J Magn Reson 174 245-253 (2005)
  43. Letter Solution structure of a calmodulin-like calcium-binding domain from Arabidopsis thaliana. Song J, Zhao Q, Thao S, Frederick RO, Markley JL. J Biomol NMR 30 451-456 (2004)
  44. Structure determination of a new protein from backbone-centered NMR data and NMR-assisted structure prediction. Mayer KL, Qu Y, Bansal S, LeBlond PD, Jenney FE, Brereton PS, Adams MW, Xu Y, Prestegard JH. Proteins 65 480-489 (2006)
  45. Perspectives on paramagnetic NMR from a life sciences infrastructure. Ravera E, Parigi G, Luchinat C. J Magn Reson 282 154-169 (2017)
  46. An improved algorithm for MFR fragment assembly. Kontaxis G. J Biomol NMR 53 149-159 (2012)
  47. On the complementarity of X-ray and NMR data. Schirò A, Carlon A, Parigi G, Murshudov G, Calderone V, Ravera E, Luchinat C. J Struct Biol X 4 100019 (2020)
  48. Membrane orientation of the Na,K-ATPase regulatory membrane protein CHIF determined by solid-state NMR. Franzin CM, Teriete P, Marassi FM. Magn Reson Chem 45 Suppl 1 S192-7 (2007)
  49. The importance of being ordered: improving NMR structures using residual dipolar couplings. Gronenborn AM. C R Biol 325 957-966 (2002)
  50. An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling. Gaalswyk K, Liu Z, Vogel HJ, MacCallum JL. Front Mol Biosci 8 676268 (2021)
  51. Backbone-only restraints for fast determination of the protein fold: the role of paramagnetism-based restraints. Cytochrome b562 as an example. Banci L, Bertini I, Felli IC, Sarrou J. J Magn Reson 172 191-200 (2005)