1eiy Citations

The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe.

Abstract

Background

In the translation of the genetic code each aminoacyl-tRNA synthetase (aaRS) must recognize its own (cognate) tRNA and attach the corresponding amino acid to the acceptor end of tRNA, discriminating all the others. The(alphabeta)2 phenylalanyl-tRNA synthetase (PheRS) is one of the most complex enzymes in the aaRS family and is characterized by anomalous charging properties. Structurally, the enzyme belongs to class II aaRSs, as its catalytic domain is built around an antiparallel beta sheet, but functionally it resembles class I as it aminoacylates the 2'OH of the terminal ribose of tRNA (class II aaRSs aminoacylate the 3'OH). With the availability of the three-dimensional structure of the complex between multisubunit PheRS and tRNAPhe, a fuller picture of the specific tRNA-aaRS interactions is beginning to emerge.

Results

The crystal structure of Thermus thermophilus PheRS complexed with cognate tRNA has been solved at 3.28 A resolution. It reveals that one tRNAPhe molecule binds across all four PheRS subunits. The interactions of PheRS with tRNA stabilize the flexible N-terminal part of the alpha subunit, which appeared to form the enzyme's 11th domain, comprising a coiled-coil structure (helical arm) built up of two long antiparallel alpha helices. The helical arms are similar to those observed in SerRS and are in the same relative orientation with respect to the catalytic domain. Anticodon recognition upon tRNA binding is performed by the B8 domain, the structure of which is similar to that of the RNA-binding domain (RBD) of the small spliceosomal protein U1A. The Th. thermophilus PheRS approaches the anticodon loop from the minor groove side.

Conclusion

The mode of interactions with tRNA explains the absolute necessity for the (alphabeta)2 architecture of PheRS. The interactions of tRNAPhe with PheRS and particularly with the coiled-coil domain of the alpha subunit result in conformational changes in TPsiC and D loops seen by comparison with uncomplexed yeast tRNAPhe. The tRNAPhe is a newly recognized type of RNA molecule specifically interacting with the RBD fold. In addition, a new type of anticodon-binding domain emerges in the aaRS family. The uniqueness of PheRS in charging 2'OH of tRNA is dictated by the size of its adenine-binding pocket and by the local conformation of the tRNA's CCA end.

Reviews - 1eiy mentioned but not cited (3)

  1. Functional complexity and regulation through RNA dynamics. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM. Nature 482 322-330 (2012)
  2. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Molecules 27 3494 (2022)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1eiy mentioned but not cited (12)

  1. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. Biol Direct 1 7 (2006)
  2. SCOR: a Structural Classification of RNA database. Klosterman PS, Tamura M, Holbrook SR, Brenner SE. Nucleic Acids Res 30 392-394 (2002)
  3. The selective tRNA aminoacylation mechanism based on a single G•U pair. Naganuma M, Sekine S, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. Nature 510 507-511 (2014)
  4. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Oliva R, Cavallo L, Tramontano A. Nucleic Acids Res 34 865-879 (2006)
  5. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. Wang S, Hu Y, Overgaard MT, Karginov FV, Uhlenbeck OC, McKay DB. RNA 12 959-967 (2006)
  6. The long-range electrostatic interactions control tRNA-aminoacyl-tRNA synthetase complex formation. Tworowski D, Safro M. Protein Sci 12 1247-1251 (2003)
  7. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone. Rodriguez-Rivas J, Marsili S, Juan D, Valencia A. Proc Natl Acad Sci U S A 113 15018-15023 (2016)
  8. Aminoacylation and conformational properties of yeast mitochondrial tRNA mutants with respiratory deficiency. Francisci S, DE Luca C, Oliva R, Morea V, Tramontano A, Frontali L. RNA 11 914-927 (2005)
  9. Systematic Analysis of the Binding Surfaces between tRNAs and Their Respective Aminoacyl tRNA Synthetase Based on Structural and Evolutionary Data. Tamaki S, Tomita M, Suzuki H, Kanai A. Front Genet 8 227 (2017)
  10. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  11. The binding mode of orphan glycyl-tRNA synthetase with tRNA supports the synthetase classification and reveals large domain movements. Han L, Luo Z, Ju Y, Chen B, Zou T, Wang J, Xu J, Gu Q, Yang XL, Schimmel P, Zhou H. Sci Adv 9 eadf1027 (2023)
  12. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Michalska K, Jedrzejczak R, Wower J, Chang C, Baragaña B, Gilbert IH, Forte B, Joachimiak A. Nucleic Acids Res 49 5351-5368 (2021)


Reviews citing this publication (20)

  1. Aminoacyl-tRNA synthesis. Ibba M, Soll D. Annu Rev Biochem 69 617-650 (2000)
  2. Universal rules and idiosyncratic features in tRNA identity. Giegé R, Sissler M, Florentz C. Nucleic Acids Res 26 5017-5035 (1998)
  3. Nucleic acid recognition by OB-fold proteins. Theobald DL, Mitton-Fry RM, Wuttke DS. Annu Rev Biophys Biomol Struct 32 115-133 (2003)
  4. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Wan W, Tharp JM, Liu WR. Biochim Biophys Acta 1844 1059-1070 (2014)
  5. Aminoacyl-tRNA synthetases. Cusack S. Curr Opin Struct Biol 7 881-889 (1997)
  6. Aminoacyl-tRNA synthetases: potential markers of genetic code development. Ribas de Pouplana L, Schimmel P. Trends Biochem Sci 26 591-596 (2001)
  7. tRNA biology in mitochondria. Salinas-Giegé T, Giegé R, Giegé P. Int J Mol Sci 16 4518-4559 (2015)
  8. Transfer RNA recognition by aminoacyl-tRNA synthetases. Beuning PJ, Musier-Forsyth K. Biopolymers 52 1-28 (1999)
  9. Induced folding in RNA-protein recognition: more than a simple molecular handshake. Frankel AD, Smith CA. Cell 92 149-151 (1998)
  10. Single-stranded-RNA binding proteins. Antson AA. Curr Opin Struct Biol 10 87-94 (2000)
  11. Processivity of translation in the eukaryote cell: role of aminoacyl-tRNA synthetases. Mirande M. FEBS Lett 584 443-447 (2010)
  12. Transfer RNAs: diversity in form and function. Berg MD, Brandl CJ. RNA Biol 18 316-339 (2021)
  13. Structural analyses clarify the complex control of mistranslation by tRNA synthetases. Guo M, Schimmel P. Curr Opin Struct Biol 22 119-126 (2012)
  14. Emergence and evolution. Bullwinkle TJ, Ibba M. Top Curr Chem 344 43-87 (2014)
  15. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. Carter CW, Wills PR. IUBMB Life 71 1088-1098 (2019)
  16. Metal compounds as tools for the construction and the interpretation of medium-resolution maps of ribosomal particles. Weinstein S, Jahn W, Glotz C, Schlünzen F, Levin I, Janell D, Harms J, Kölln I, Hansen HA, Glühmann M, Bennett WS, Bartels H, Bashan A, Agmon I, Kessler M, Pioletti M, Avila H, Anagnostopoulos K, Peretz M, Auerbach T, Franceschi F, Yonath A. J Struct Biol 127 141-151 (1999)
  17. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. Vasil'eva IA, Moor NA. Biochemistry (Mosc) 72 247-263 (2007)
  18. Recognizing the D-loop of transfer RNAs. Hendrickson TL. Proc Natl Acad Sci U S A 98 13473-13475 (2001)
  19. The tRNA identity landscape for aminoacylation and beyond. Giegé R, Eriani G. Nucleic Acids Res 51 1528-1570 (2023)
  20. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. FEBS Lett 590 4180-4191 (2016)

Articles citing this publication (92)

  1. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Fuxreiter M, Simon I, Friedrich P, Tompa P. J Mol Biol 338 1015-1026 (2004)
  2. Structure of the RNA-dependent RNA polymerase of poliovirus. Hansen JL, Long AM, Schultz SC. Structure 5 1109-1122 (1997)
  3. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Hoang C, Ferré-D'Amaré AR. Cell 107 929-939 (2001)
  4. Structure-based analysis of protein-RNA interactions using the program ENTANGLE. Allers J, Shamoo Y. J Mol Biol 311 75-86 (2001)
  5. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Petry S, Brodersen DE, Murphy FV, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V. Cell 123 1255-1266 (2005)
  6. Letter Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Ribas de Pouplana L, Schimmel P. Cell 104 191-193 (2001)
  7. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nozawa K, O'Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Nature 457 1163-1167 (2009)
  8. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. Quevillon S, Agou F, Robinson JC, Mirande M. J Biol Chem 272 32573-32579 (1997)
  9. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. Roy H, Ling J, Irnov M, Ibba M. EMBO J 23 4639-4648 (2004)
  10. Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. Martin G, Keller W, Doublié S. EMBO J 19 4193-4203 (2000)
  11. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Simos G, Sauer A, Fasiolo F, Hurt EC. Mol Cell 1 235-242 (1998)
  12. Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Goto-Ito S, Ito T, Kuratani M, Bessho Y, Yokoyama S. Nat Struct Mol Biol 16 1109-1115 (2009)
  13. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Xie W, Liu X, Huang RH. Nat Struct Biol 10 781-788 (2003)
  14. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Todone F, Brick P, Werner F, Weinzierl RO, Onesti S. Mol Cell 8 1137-1143 (2001)
  15. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. Hoang C, Chen J, Vizthum CA, Kandel JM, Hamilton CS, Mueller EG, Ferré-D'Amaré AR. Mol Cell 24 535-545 (2006)
  16. Resampling and editing of mischarged tRNA prior to translation elongation. Ling J, So BR, Yadavalli SS, Roy H, Shoji S, Fredrick K, Musier-Forsyth K, Ibba M. Mol Cell 33 654-660 (2009)
  17. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition. Ramos A, Varani G. Nucleic Acids Res 25 2083-2090 (1997)
  18. Crystal structure of an archaebacterial DNA polymerase. Zhao Y, Jeruzalmi D, Moarefi I, Leighton L, Lasken R, Kuriyan J. Structure 7 1189-1199 (1999)
  19. Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Bieger B, Essen LO, Oesterhelt D. Structure 11 375-385 (2003)
  20. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M. EMBO J 19 6908-6917 (2000)
  21. Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II. Meka H, Werner F, Cordell SC, Onesti S, Brick P. Nucleic Acids Res 33 6435-6444 (2005)
  22. Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. Bullard JM, Cai YC, Demeler B, Spremulli LL. J Mol Biol 288 567-577 (1999)
  23. New class of bacterial phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity. Beyer D, Kroll HP, Endermann R, Schiffer G, Siegel S, Bauser M, Pohlmann J, Brands M, Ziegelbauer K, Haebich D, Eymann C, Brötz-Oesterhelt H. Antimicrob Agents Chemother 48 525-532 (2004)
  24. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Zhang Y, Wang L, Schultz PG, Wilson IA. Protein Sci 14 1340-1349 (2005)
  25. Fitting peptides into the RNA world. Frankel AD. Curr Opin Struct Biol 10 332-340 (2000)
  26. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Rodin SN, Rodin AS. Heredity (Edinb) 100 341-355 (2008)
  27. Predicting helical coaxial stacking in RNA multibranch loops. Tyagi R, Mathews DH. RNA 13 939-951 (2007)
  28. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. Reshetnikova L, Moor N, Lavrik O, Vassylyev DG. J Mol Biol 287 555-568 (1999)
  29. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Fukunaga R, Yokoyama S. Nat Struct Mol Biol 14 272-279 (2007)
  30. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Kotik-Kogan O, Moor N, Tworowski D, Safro M. Structure 13 1799-1807 (2005)
  31. Structure of human cytosolic phenylalanyl-tRNA synthetase: evidence for kingdom-specific design of the active sites and tRNA binding patterns. Finarov I, Moor N, Kessler N, Klipcan L, Safro MG. Structure 18 343-353 (2010)
  32. ATP binding site of P2X channel proteins: structural similarities with class II aminoacyl-tRNA synthetases. Freist W, Verhey JF, Stühmer W, Gauss DH. FEBS Lett 434 61-65 (1998)
  33. Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Sakurai M, Ohtsuki T, Watanabe K. Nucleic Acids Res 33 1653-1661 (2005)
  34. Idiosyncrasy and identity in the prokaryotic Phe-system: crystal structure of E. coli phenylalanyl-tRNA synthetase complexed with phenylalanine and AMP. Mermershtain I, Finarov I, Klipcan L, Kessler N, Rozenberg H, Safro MG. Protein Sci 20 160-167 (2011)
  35. Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. Renault L, Kerjan P, Pasqualato S, Ménétrey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J. EMBO J 20 570-578 (2001)
  36. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. McClain WH, Schneider J, Bhattacharya S, Gabriel K. Proc Natl Acad Sci U S A 95 460-465 (1998)
  37. The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase. Klipcan L, Levin I, Kessler N, Moor N, Finarov I, Safro M. Structure 16 1095-1104 (2008)
  38. Crystal structure of human mitochondrial PheRS complexed with tRNA(Phe) in the active "open" state. Klipcan L, Moor N, Finarov I, Kessler N, Sukhanova M, Safro MG. J Mol Biol 415 527-537 (2012)
  39. Crystal structure of trbp111: a structure-specific tRNA-binding protein. Swairjo MA, Morales AJ, Wang CC, Ortiz AR, Schimmel P. EMBO J 19 6287-6298 (2000)
  40. Evaluation of the energetic contribution of interhelical Coulombic interactions for coiled coil helix orientation specificity. McClain DL, Binfet JP, Oakley MG. J Mol Biol 313 371-383 (2001)
  41. Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Ling J, Roy H, Qin D, Rubio MA, Alfonzo JD, Fredrick K, Ibba M. Proc Natl Acad Sci U S A 104 15299-15304 (2007)
  42. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. Hauenstein SI, Hou YM, Perona JJ. J Biol Chem 283 21997-22006 (2008)
  43. Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. Ihsanawati, Nishimoto M, Higashijima K, Shirouzu M, Grosjean H, Bessho Y, Yokoyama S. J Mol Biol 383 871-884 (2008)
  44. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase. Burke B, Lipman RS, Shiba K, Musier-Forsyth K, Hou YM. J Biol Chem 276 20286-20291 (2001)
  45. Human phenylalanyl-tRNA synthetase: cloning, characterization of the deduced amino acid sequences in terms of the structural domains and coordinately regulated expression of the alpha and beta subunits in chronic myeloid leukemia cells. Rodova M, Ankilova V, Safro MG. Biochem Biophys Res Commun 255 765-773 (1999)
  46. Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. Rodin SN, Rodin AS. DNA Cell Biol 25 617-626 (2006)
  47. An engineered class I transfer RNA with a class II tertiary fold. Nissan TA, Oliphant B, Perona JJ. RNA 5 434-445 (1999)
  48. Mapping of a protein-RNA kissing hairpin interface: Rom and Tar-Tar*. Comolli LR, Pelton JG, Tinoco I. Nucleic Acids Res 26 4688-4695 (1998)
  49. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease. Walker MA, Mohler KP, Hopkins KW, Oakley DH, Sweetser DA, Ibba M, Frosch MP, Thibert RL. J Child Neurol 31 1127-1137 (2016)
  50. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Carter CW, Wills PR. Nucleic Acids Res 46 9667-9683 (2018)
  51. The phenylalanyl-tRNA synthetase specifically binds DNA. Lechler A, Kreutzer R. J Mol Biol 278 897-901 (1998)
  52. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ. J Mol Biol 299 431-446 (2000)
  53. Large-scale movement of functional domains facilitates aminoacylation by human mitochondrial phenylalanyl-tRNA synthetase. Yadavalli SS, Klipcan L, Zozulya A, Banerjee R, Svergun D, Safro M, Ibba M. FEBS Lett 583 3204-3208 (2009)
  54. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. Egea PF, Napetschnig J, Walter P, Stroud RM. PLoS One 3 e3528 (2008)
  55. Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle. Pakhomova ON, Deep S, Huang Q, Zwieb C, Hinck AP. J Mol Biol 317 145-158 (2002)
  56. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. Kim JM, Choi HS, Seong BL. RNA Biol 14 926-937 (2017)
  57. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick. Raymond A, Shuman S. Nucleic Acids Res 35 839-849 (2007)
  58. Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly). Chang AT, Nikonowicz EP. Biochemistry 51 3662-3674 (2012)
  59. Alternative designs for construction of the class II transfer RNA tertiary core. Nissan TA, Perona JJ. RNA 6 1585-1596 (2000)
  60. DNA-binding of phenylalanyl-tRNA synthetase is accompanied by loop formation of the double-stranded DNA. Dou X, Limmer S, Kreutzer R. J Mol Biol 305 451-458 (2001)
  61. Cloning and expression of human phenylalanyl-tRNA synthetase in Escherichia coli: comparative study of purified recombinant enzymes. Moor N, Linshiz G, Safro M. Protein Expr Purif 24 260-267 (2002)
  62. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase. Xin Y, Li W, Dwyer DS, First EA. J Mol Biol 303 287-298 (2000)
  63. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells. Popp O, Larraillet V, Kettenberger H, Gorr IH, Hilger M, Lipsmeier F, Zeck A, Beaucamp N. Biotechnol Bioeng 112 1187-1199 (2015)
  64. Determination of tRNA(Phe) nucleotides contacting the subunits of Thermus thermophilus phenylalanyl-tRNA synthetase by photoaffinity crosslinking. Moor NA, Ankilova VN, Lavrik OI, Favre A. Biochim Biophys Acta 1518 226-236 (2001)
  65. Aminoacylation of tRNA 2'- or 3'-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases. Englert M, Moses S, Hohn M, Ling J, O'Donoghue P, Söll D. FEBS Lett 587 3360-3364 (2013)
  66. Rational protein engineering in action: the first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus. Evdokimov AG, Mekel M, Hutchings K, Narasimhan L, Holler T, McGrath T, Beattie B, Fauman E, Yan C, Heaslet H, Walter R, Finzel B, Ohren J, McConnell P, Braden T, Sun F, Spessard C, Banotai C, Al-Kassim L, Ma W, Wengender P, Kole D, Garceau N, Toogood P, Liu J. J Struct Biol 162 152-169 (2008)
  67. Sample preparation for two-dimensional blue native/SDS polyacrylamide gel electrophoresis in the identification of Streptomyces coelicolor cytoplasmic protein complexes. Wang ZJ, Xu XP, Fan KQ, Jia CJ, Yang KQ. J Biochem Biophys Methods 70 565-572 (2007)
  68. Acceptor Stem Differences Contribute to Species-Specific Use of Yeast and Human tRNASer. Berg MD, Genereaux J, Zhu Y, Mian S, Gloor GB, Brandl CJ. Genes (Basel) 9 E612 (2018)
  69. High Throughput Screen Identifies Natural Product Inhibitor of Phenylalanyl-tRNA Synthetase from Pseudomonas aeruginosa and Streptococcus pneumoniae. Hu Y, Palmer SO, Munoz H, Bullard JM. Curr Drug Discov Technol 11 279-292 (2014)
  70. Hydrostatic and osmotic pressure study of the RNA hydration. Giel-Pietraszuk M, Barciszewski J. Mol Biol Rep 39 6309-6318 (2012)
  71. Kinetic and structural changes in HsmtPheRS, induced by pathogenic mutations in human FARS2. Kartvelishvili E, Tworowski D, Vernon H, Moor N, Wang J, Wong LJ, Chrzanowska-Lightowlers Z, Safro M. Protein Sci 26 1505-1516 (2017)
  72. tRNA discrimination by T. thermophilus phenylalanyl-tRNA synthetase at the binding step. Vasil'eva IA, Ankilova VN, Lavrik OI, Moor NA. J Mol Recognit 15 188-196 (2002)
  73. Domains of phenylalanyl-tRNA synthetase from Thermus thermophilus required for aminoacylation. Lechler A, Kreutzer R. FEBS Lett 420 139-142 (1997)
  74. Pyrophosphate mediates the effect of certain tRNA mutations on aminoacylation of yeast tRNA(Phe). Khvorova A, Motorin Y, Wolfson AD. Nucleic Acids Res 27 4451-4456 (1999)
  75. Revisiting the operational RNA code for amino acids: Ensemble attributes and their implications. Shaul S, Berel D, Benjamini Y, Graur D. RNA 16 141-153 (2010)
  76. Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: A homology model approach. Elbaramawi SS, Ibrahim SM, Lashine EM, El-Sadek ME, Mantzourani E, Simons C. J Mol Graph Model 73 36-47 (2017)
  77. Universal pathway for posttransfer editing reactions: insights from the crystal structure of TtPheRS with puromycin. Tworowski D, Klipcan L, Peretz M, Moor N, Safro MG. Proc Natl Acad Sci U S A 112 3967-3972 (2015)
  78. The mechanistic and evolutionary aspects of the 2'- and 3'-OH paradigm in biosynthetic machinery. Safro M, Klipcan L. Biol Direct 8 17 (2013)
  79. A new protein engineering approach combining chemistry and biology, part I; site-specific incorporation of 4-iodo-L-phenylalanine in vitro by using misacylated suppressor tRNAPhe. Kodama K, Fukuzawa S, Sakamoto K, Nakayama H, Kigawa T, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S. Chembiochem 7 1577-1581 (2006)
  80. Breaking a single hydrogen bond in the mitochondrial tRNAPhe -PheRS complex leads to phenotypic pleiotropy of human disease. Peretz M, Tworowski D, Kartvelishvili E, Livingston J, Chrzanowska-Lightowlers Z, Safro M. FEBS J 287 3814-3826 (2020)
  81. Chimeric human mitochondrial PheRS exhibits editing activity to discriminate nonprotein amino acids. Kartvelishvili E, Peretz M, Tworowski D, Moor N, Safro M. Protein Sci 25 618-626 (2016)
  82. Covalent complex of phenylalanyl-tRNA synthetase with 4-thiouridine-substituted tRNA(Phe) gene transcript retains aminoacylation activity. Moor NA, Favre A, Lavrik OI. FEBS Lett 427 1-4 (1998)
  83. Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase. An S, Barany G, Musier-Forsyth K. Nucleic Acids Res 36 2514-2521 (2008)
  84. Structural Aspects of Phenylalanylation and Quality Control in Three Major Forms of Phenylalanyl-tRNA Synthetase. Klipcan L, Finarov I, Moor N, Safro MG. J Amino Acids 2010 983503 (2010)
  85. Anticodon G recognition by tRNA synthetases mimics the tRNA core. Klipcan L, Safro M, Schimmel P. Trends Biochem Sci 38 229-232 (2013)
  86. Crystallization and X-ray analysis of human cytoplasmic phenylalanyl-tRNA synthetase. Finarov I, Moor N, Kessler N, Safro M. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 93-97 (2009)
  87. Oxidation alters the architecture of the phenylalanyl-tRNA synthetase editing domain to confer hyperaccuracy. Srinivas P, Steiner RE, Pavelich IJ, Guerrero-Ferreira R, Juneja P, Ibba M, Dunham CM. Nucleic Acids Res 49 11800-11809 (2021)
  88. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase. Gagen EJ, Yoshinaga MY, Garcia Prado F, Hinrichs KU, Thomm M. Archaea 2016 5938289 (2016)
  89. Disordered C-terminal domain of tyrosyl-tRNA synthetase: secondary structure prediction. Jermutus L, Guez V, Bedouelle H. Biochimie 81 235-244 (1999)
  90. Interaction of human phenylalanyl-tRNA synthetase with specific tRNA according to thiophosphate footprinting. Vasil'eva IA, Semenova EA, Moor NA. Biochemistry (Mosc) 74 175-185 (2009)
  91. Design, computational studies, synthesis and in vitro antimicrobial evaluation of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues. Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. BMC Chem 15 58 (2021)
  92. EvoProDom: evolutionary modeling of protein families by assessing translocations of protein domains. Carmi G, Gorohovski A, Frenkel-Morgenstern M. FEBS Open Bio 11 2507-2524 (2021)