1d4y Citations

Structure-based design of HIV protease inhibitors: sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors.

Articles - 1d4y mentioned but not cited (5)

  1. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction. Cheng T, Liu Z, Wang R. BMC Bioinformatics 11 193 (2010)
  2. Unique Flap Conformation in an HIV-1 Protease with High-Level Darunavir Resistance. Nakashima M, Ode H, Suzuki K, Fujino M, Maejima M, Kimura Y, Masaoka T, Hattori J, Matsuda M, Hachiya A, Yokomaku Y, Suzuki A, Watanabe N, Sugiura W, Iwatani Y. Front Microbiol 7 61 (2016)
  3. Rationale for more diverse inhibitors in competition with substrates in HIV-1 protease. Ozer N, Schiffer CA, Haliloglu T. Biophys J 99 1650-1659 (2010)
  4. Relative Principal Components Analysis: Application to Analyzing Biomolecular Conformational Changes. Ahmad M, Helms V, Kalinina OV, Lengauer T. J Chem Theory Comput 15 2166-2178 (2019)
  5. Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions. Marsh L. PLoS One 6 e23215 (2011)


Reviews citing this publication (11)

  1. 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. McGlacken GP, Fairlamb IJ. Nat Prod Rep 22 369-385 (2005)
  2. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Etayo P, Vidal-Ferran A. Chem Soc Rev 42 728-754 (2013)
  3. Recent developments in HIV protease inhibitor therapy. Molla A, Granneman GR, Sun E, Kempf DJ. Antiviral Res 39 1-23 (1998)
  4. Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor. Thaisrivongs S, Strohbach JW. Biopolymers 51 51-58 (1999)
  5. New antivirals and drug resistance. Colman PM. Annu Rev Biochem 78 95-118 (2009)
  6. Tipranavir: a protease inhibitor from a new class with distinct antiviral activity. Yeni P. J Acquir Immune Defic Syndr 34 Suppl 1 S91-4 (2003)
  7. Tipranavir: a novel non-peptidic protease inhibitor for the treatment of HIV infection. Mehandru S, Markowitz M. Expert Opin Investig Drugs 12 1821-1828 (2003)
  8. Tipranavir: a new option for the treatment of drug-resistant HIV infection. Temesgen Z, Feinberg J. Clin Infect Dis 45 761-769 (2007)
  9. Tipranavir: a novel second-generation nonpeptidic protease inhibitor. Kandula VR, Khanlou H, Farthing C. Expert Rev Anti Infect Ther 3 9-21 (2005)
  10. Viral proteases as therapeutic targets. Majerová T, Konvalinka J. Mol Aspects Med 88 101159 (2022)
  11. [Bioinformatics studies on drug resistance against anti-HIV-1 drugs]. Ode H. Uirusu 61 35-47 (2011)

Articles citing this publication (24)

  1. The maximal affinity of ligands. Kuntz ID, Chen K, Sharp KA, Kollman PA. Proc Natl Acad Sci U S A 96 9997-10002 (1999)
  2. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Perryman AL, Lin JH, McCammon JA. Protein Sci 13 1108-1123 (2004)
  3. Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir. Baxter JD, Schapiro JM, Boucher CA, Kohlbrenner VM, Hall DB, Scherer JR, Mayers DL. J Virol 80 10794-10801 (2006)
  4. Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. Larder BA, Hertogs K, Bloor S, van den Eynde CH, DeCian W, Wang Y, Freimuth WW, Tarpley G. AIDS 14 1943-1948 (2000)
  5. Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Poppe SM, Slade DE, Chong KT, Hinshaw RR, Pagano PJ, Markowitz M, Ho DD, Mo H, Gorman RR, Dueweke TJ, Thaisrivongs S, Tarpley WG. Antimicrob Agents Chemother 41 1058-1063 (1997)
  6. Evaluating the potency of HIV-1 protease drugs to combat resistance. Hou T, McLaughlin WA, Wang W. Proteins 71 1163-1174 (2008)
  7. Metal-free aminosulfonylation of aryldiazonium tetrafluoroborates with DABCO⋅(SO2)2 and hydrazines. Zheng D, An Y, Li Z, Wu J. Angew Chem Int Ed Engl 53 2451-2454 (2014)
  8. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Hou T, Zhang W, Wang J, Wang W. Proteins 74 837-846 (2009)
  9. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model. Das D, Koh Y, Tojo Y, Ghosh AK, Mitsuya H. J Chem Inf Model 49 2851-2862 (2009)
  10. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design. Perryman AL, Lin JH, McCammon JA. Biopolymers 82 272-284 (2006)
  11. A 14-day dose-response study of the efficacy, safety, and pharmacokinetics of the nonpeptidic protease inhibitor tipranavir in treatment-naive HIV-1-infected patients. McCallister S, Valdez H, Curry K, MacGregor T, Borin M, Freimuth W, Wang Y, Mayers DL. J Acquir Immune Defic Syndr 35 376-382 (2004)
  12. Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Kirkiacharian S, Thuy DT, Sicsic S, Bakhchinian R, Kurkjian R, Tonnaire T. Farmaco 57 703-708 (2002)
  13. In vitro combination of PNU-140690, a human immunodeficiency virus type 1 protease inhibitor, with ritonavir against ritonavir-sensitive and -resistant clinical isolates. Chong KT, Pagano PJ. Antimicrob Agents Chemother 41 2367-2373 (1997)
  14. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Nagarajan SR, De Crescenzo GA, Getman DP, Lu HF, Sikorski JA, Walker JL, McDonald JJ, Houseman KA, Kocan GP, Kishore N, Mehta PP, Funkes-Shippy CL, Blystone L. Bioorg Med Chem 11 4769-4777 (2003)
  15. Novel method for probing the specificity binding profile of ligands: applications to HIV protease. Sherman W, Tidor B. Chem Biol Drug Des 71 387-407 (2008)
  16. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Perryman AL, Lin JH, Andrew McCammon J. Chem Biol Drug Des 67 336-345 (2006)
  17. Synthesis of thiazolone-based sulfonamides as inhibitors of HCV NS5B polymerase. Ding Y, Smith KL, Varaprasad CV, Chang E, Alexander J, Yao N. Bioorg Med Chem Lett 17 841-845 (2007)
  18. Drug resistance of HIV-1 protease against JE-2147: I47V mutation investigated by molecular dynamics simulation. Bandyopadhyay P, Meher BR. Chem Biol Drug Des 67 155-161 (2006)
  19. Computational multiscale modeling in protein--ligand docking. Taufer M, Armen R, Chen J, Teller P, Brooks C. IEEE Eng Med Biol Mag 28 58-69 (2009)
  20. Inhibition and substrate recognition--a computational approach applied to HIV protease. Vinkers HM, de Jonge MR, Daeyaert ED, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Janssen PA. J Comput Aided Mol Des 17 567-581 (2003)
  21. Oxidative degradation of a sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrone in aqueous/organic cosolvent mixtures. Hovorka SW, Hageman MJ, Schöneich C. Pharm Res 19 538-545 (2002)
  22. Non-peptidic HIV protease inhibitors: C2-symmetry-based design of bis-sulfonamide dihydropyrones. Janakiraman MN, Watenpaugh KD, Tomich PK, Chong KT, Turner SR, Tommasi RA, Thaisrivongs S, Strohbach JW. Bioorg Med Chem Lett 8 1237-1242 (1998)
  23. Classification of HIV protease inhibitors on the basis of their antiviral potency using radial basis function neural networks. Patankar SJ, Jurs PC. J Comput Aided Mol Des 17 155-171 (2003)
  24. Stereoselective hydroxylation of nonpeptidic HIV protease inhibitors by CYP2D6. Zhao Z, Koeplinger KA, Waldon DJ. Chirality 11 731-739 (1999)