1c0m Citations

Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase.

J Mol Biol 296 535-48 (2000)
Cited: 78 times
EuropePMC logo PMID: 10669607

Abstract

Integration of retroviral cDNA is a necessary step in viral replication. The virally encoded integrase protein and DNA sequences at the ends of the linear viral cDNA are required for this reaction. Previous studies revealed that truncated forms of Rous sarcoma virus integrase containing two of the three protein domains can carry out integration reactions in vitro. Here, we describe the crystal structure at 2.5 A resolution of a fragment of the integrase of Rous sarcoma virus (residues 49-286) containing both the conserved catalytic domain and a modulatory DNA-binding domain (C domain). The catalytic domains form a symmetric dimer, but the C domains associate asymmetrically with each other and together adopt a canted conformation relative to the catalytic domains. A binding path for the viral cDNA is evident spanning both domain surfaces, allowing modeling of the larger integration complexes that are known to be active in vivo. The modeling suggests that formation of an integrase tetramer (a dimer of dimers) is necessary and sufficient for joining both viral cDNA ends at neighboring sites in the target DNA. The observed asymmetric arrangement of C domains suggests that they could form a rotationally symmetric tetramer that may be important for bridging integrase complexes at each cDNA end.

Reviews - 1c0m mentioned but not cited (3)

  1. Structural biology of retroviral DNA integration. Li X, Krishnan L, Cherepanov P, Engelman A. Virology 411 194-205 (2011)
  2. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A. FEBS J 276 2926-2946 (2009)
  3. Retroviral integrase protein and intasome nucleoprotein complex structures. Grawenhoff J, Engelman AN. World J Biol Chem 8 32-44 (2017)

Articles - 1c0m mentioned but not cited (8)

  1. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. Proc Natl Acad Sci U S A 102 17308-17313 (2005)
  2. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Wang JY, Ling H, Yang W, Craigie R. EMBO J 20 7333-7343 (2001)
  3. Conformational plasticity of the lipid transfer protein SCP2. Filipp FV, Sattler M. Biochemistry 46 7980-7991 (2007)
  4. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. Peletskaya E, Andrake M, Gustchina A, Merkel G, Alexandratos J, Zhou D, Bojja RS, Satoh T, Potapov M, Kogon A, Potapov V, Wlodawer A, Skalka AM. PLoS One 6 e27751 (2011)
  5. NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases. Kanja M, Cappy P, Levy N, Oladosu O, Schmidt S, Rossolillo P, Winter F, Gasser R, Moog C, Ruff M, Negroni M, Lener D. J Virol 94 e01035-20 (2020)
  6. C-Terminal Domain of Integrase Binds between the Two Active Sites. Roberts VA. J Chem Theory Comput 11 4500-4511 (2015)
  7. Removal of a consensus proline is not sufficient to allow tetratricopeptide repeat oligomerization. Bakkum AL, Hill RB. Protein Sci 26 1974-1983 (2017)
  8. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. Sun B, Kim H, Mello CC, Priess JR. PLoS Genet 19 e1010804 (2023)


Reviews citing this publication (6)

  1. Retroviral integrase inhibitors year 2000: update and perspectives. Pommier Y, Marchand C, Neamati N. Antiviral Res 47 139-148 (2000)
  2. Sites of retroviral DNA integration: From basic research to clinical applications. Serrao E, Engelman AN. Crit Rev Biochem Mol Biol 51 26-42 (2016)
  3. Retroviral Integrase: Then and Now. Andrake MD, Skalka AM. Annu Rev Virol 2 241-264 (2015)
  4. HIV-1 integrase and RNase H activities as therapeutic targets. Andréola ML, De Soultrait VR, Fournier M, Parissi V, Desjobert C, Litvak S. Expert Opin Ther Targets 6 433-446 (2002)
  5. In search of second-generation HIV integrase inhibitors: targeting integration beyond strand transfer. Voet AR, Maeyer MD, Debyser Z, Christ F. Future Med Chem 1 1259-1274 (2009)
  6. Multifunctional facets of retrovirus integrase. Grandgenett DP, Pandey KK, Bera S, Aihara H. World J Biol Chem 6 83-94 (2015)

Articles citing this publication (61)

  1. Retroviral intasome assembly and inhibition of DNA strand transfer. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Nature 464 232-236 (2010)
  2. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM. Proc Natl Acad Sci U S A 97 8233-8238 (2000)
  3. Retroviral DNA integration: reaction pathway and critical intermediates. Li M, Mizuuchi M, Burke TR, Craigie R. EMBO J 25 1295-1304 (2006)
  4. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. Proc Natl Acad Sci U S A 107 15910-15915 (2010)
  5. Repair of gaps in retroviral DNA integration intermediates. Yoder KE, Bushman FD. J Virol 74 11191-11200 (2000)
  6. Functional and structural characterization of the integrase from the prototype foamy virus. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. Nucleic Acids Res 37 243-255 (2009)
  7. Structural basis for functional tetramerization of lentiviral integrase. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. PLoS Pathog 5 e1000515 (2009)
  8. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. Gao K, Butler SL, Bushman F. EMBO J 20 3565-3576 (2001)
  9. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. Li M, Craigie R. J Biol Chem 280 29334-29339 (2005)
  10. Plasticity of the gene functions for DNA replication in the T4-like phages. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD. J Mol Biol 361 46-68 (2006)
  11. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Ballandras-Colas A, Brown M, Cook NJ, Dewdney TG, Demeler B, Cherepanov P, Lyumkis D, Engelman AN. Nature 530 358-361 (2016)
  12. Crystal structure of the Rous sarcoma virus intasome. Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H. Nature 530 362-366 (2016)
  13. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends. Chen A, Weber IT, Harrison RW, Leis J. J Biol Chem 281 4173-4182 (2006)
  14. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. Biopolymers 68 110-120 (2003)
  15. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Barreca ML, Lee KW, Chimirri A, Briggs JM. Biophys J 84 1450-1463 (2003)
  16. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH. J Mol Biol 425 2133-2146 (2013)
  17. Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA. Ren G, Gao K, Bushman FD, Yeager M. J Mol Biol 366 286-294 (2007)
  18. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. Wielens J, Crosby IT, Chalmers DK. J Comput Aided Mol Des 19 301-317 (2005)
  19. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase. Dar MJ, Monel B, Krishnan L, Shun MC, Di Nunzio F, Helland DE, Engelman A. Retrovirology 6 94 (2009)
  20. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Brigo A, Lee KW, Iurcu Mustata G, Briggs JM. Biophys J 88 3072-3082 (2005)
  21. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. Wielens J, Headey SJ, Jeevarajah D, Rhodes DI, Deadman J, Chalmers DK, Scanlon MJ, Parker MW. FEBS Lett 584 1455-1462 (2010)
  22. Lys-34, dispensable for integrase catalysis, is required for preintegration complex function and human immunodeficiency virus type 1 replication. Lu R, Vandegraaff N, Cherepanov P, Engelman A. J Virol 79 12584-12591 (2005)
  23. Differential sensitivities of retroviruses to integrase strand transfer inhibitors. Koh Y, Matreyek KA, Engelman A. J Virol 85 3677-3682 (2011)
  24. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O, Henderson A, Kummerling M, Skalka AM. J Biol Chem 286 17047-17059 (2011)
  25. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: a molecular modeling perspective. Xue W, Liu H, Yao X. J Comput Chem 33 527-536 (2012)
  26. Retroviral Integrase Structure and DNA Recombination Mechanism. Engelman A, Cherepanov P. Microbiol Spectr 2 1-22 (2014)
  27. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, Montelione GT, Roth MJ. Nucleic Acids Res 43 5647-5663 (2015)
  28. Revealing domain structure through linker-scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins. Puglia J, Wang T, Smith-Snyder C, Cote M, Scher M, Pelletier JN, John S, Jonsson CB, Roth MJ. J Virol 80 9497-9510 (2006)
  29. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Bhatt V, Shi K, Salamango DJ, Moeller NH, Pandey KK, Bera S, Bohl HO, Kurniawan F, Orellana K, Zhang W, Grandgenett DP, Harris RS, Sundborger-Lunna AC, Aihara H. Nat Commun 11 3121 (2020)
  30. Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers. Gupta K, Diamond T, Hwang Y, Bushman F, Van Duyne GD. J Biol Chem 285 20303-20315 (2010)
  31. Molecular and genetic determinants of rous sarcoma virus integrase for concerted DNA integration. Chiu R, Grandgenett DP. J Virol 77 6482-6492 (2003)
  32. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Diamond TL, Bushman FD. Nucleic Acids Res 34 6116-6125 (2006)
  33. Mutations in the C-terminal domain of ALSV (Avian Leukemia and Sarcoma Viruses) integrase alter the concerted DNA integration process in vitro. Moreau K, Faure C, Violot S, Verdier G, Ronfort C. Eur J Biochem 270 4426-4438 (2003)
  34. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase. Yang F, Roth MJ. J Virol 75 9561-9570 (2001)
  35. Correct integration mediated by integrase-LexA fusion proteins incorporated into HIV-1. Holmes-Son ML, Chow SA. Mol Ther 5 360-370 (2002)
  36. Metal binding by the D,DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+ in vitro. Gao K, Wong S, Bushman F. J Virol 78 6715-6722 (2004)
  37. A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding. Shi K, Pandey KK, Bera S, Vora AC, Grandgenett DP, Aihara H. PLoS One 8 e56892 (2013)
  38. Division of labor within human immunodeficiency virus integrase complexes: determinants of catalysis and target DNA capture. Diamond TL, Bushman FD. J Virol 79 15376-15387 (2005)
  39. Integrase of Mason-Pfizer monkey virus. Snásel J, Krejcík Z, Jencová V, Rosenberg I, Ruml T, Alexandratos J, Gustchina A, Pichová I. FEBS J 272 203-216 (2005)
  40. The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Hare S, Cherepanov P. Viruses 1 780-801 (2009)
  41. Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS. Antimicrob Agents Chemother 49 2035-2043 (2005)
  42. Pathogenicity and rapid growth kinetics of feline immunodeficiency virus are linked to 3' elements. Thompson J, MacMillan M, Boegler K, Wood C, Elder JH, VandeWoude S. PLoS One 6 e24020 (2011)
  43. Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Villanueva RA, Jonsson CB, Jones J, Georgiadis MM, Roth MJ. Virology 316 146-160 (2003)
  44. Identifying amino acid residues that contribute to the cellular-DNA binding site on retroviral integrase. Nowak MG, Sudol M, Lee NE, Konsavage WM, Katzman M. Virology 389 141-148 (2009)
  45. Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization. Moreau K, Faure C, Violot S, Gouet P, Verdier G, Ronfort C. Virology 318 566-581 (2004)
  46. Effects of varying the spacing within the D,D-35-E motif in the catalytic region of retroviral integrase. Konsavage WM, Sudol M, Katzman M. Virology 379 223-233 (2008)
  47. Nuclear import of Avian Sarcoma Virus integrase is facilitated by host cell factors. Andrake MD, Sauter MM, Boland K, Goldstein AD, Hussein M, Skalka AM. Retrovirology 5 73 (2008)
  48. Retroviral integrases that are improved for processing but impaired for joining. Konsavage WM, Sudol M, Lee NE, Katzman M. Virus Res 125 198-210 (2007)
  49. Rous sarcoma virus synaptic complex capable of concerted integration is kinetically trapped by human immunodeficiency virus integrase strand transfer inhibitors. Pandey KK, Bera S, Korolev S, Campbell M, Yin Z, Aihara H, Grandgenett DP. J Biol Chem 289 19648-19658 (2014)
  50. A C-terminal "Tail" Region in the Rous Sarcoma Virus Integrase Provides High Plasticity of Functional Integrase Oligomerization during Intasome Assembly. Pandey KK, Bera S, Shi K, Aihara H, Grandgenett DP. J Biol Chem 292 5018-5030 (2017)
  51. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly. Ballandras A, Moreau K, Robert X, Confort MP, Merceron R, Haser R, Ronfort C, Gouet P. PLoS One 6 e23032 (2011)
  52. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase. Bera S, Pandey KK, Aihara H, Grandgenett DP. J Biol Chem 293 16440-16452 (2018)
  53. In vitro functional analyses of the human immunodeficiency virus type 1 (HIV-1) integrase mutants give new insights into the intasome assembly. Cellier C, Moreau K, Gallay K, Ballandras A, Gouet P, Ronfort C. Virology 439 97-104 (2013)
  54. Paired DNA three-way junctions as scaffolds for assembling integrase complexes. Johnson EP, Bushman FD. Virology 286 304-316 (2001)
  55. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  56. Targeting HIV-1 integrase. Sayasith K, Sauvé G, Yelle J. Expert Opin Ther Targets 5 443-464 (2001)
  57. Crystal structures of catalytic core domain of BIV integrase: implications for the interaction between integrase and target DNA. Yao X, Fang S, Qiao W, Geng Y, Shen Y. Protein Cell 1 363-370 (2010)
  58. Retroviral integrase: Structure, mechanism, and inhibition. Passos DO, Li M, Craigie R, Lyumkis D. Enzymes 50 249-300 (2021)
  59. Functional analyses of mutants of the central core domain of an Avian Sarcoma/Leukemia Virus integrase. Charmetant J, Moreau K, Gallay K, Ballandras A, Gouet P, Ronfort C. Virology 421 42-50 (2011)
  60. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations. Wijitkosoom A, Tonmunphean S, Truong TN, Hannongbua S. J Biomol Struct Dyn 23 613-624 (2006)
  61. Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase. Shah K, Gupta S, Mishra H, Sharma PK, Jayaswal A. Arch Virol 159 2069-2080 (2014)