1bbz Citations

Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions.

J Mol Biol 281 513-21 (1998)
Related entries: 1abo, 1abq, 1fyn

Cited: 87 times
EuropePMC logo PMID: 9698566

Abstract

The Abl-SH3 domain is implicated in negative regulation of the Abl kinase by mediating protein-protein interactions. High-affinity SH3 ligands could compete for these interactions and specifically activate the Abl kinase, providing control and a better understanding of the molecular interactions that underlie diseases where SH3 domains are involved. The p41 peptide (APSYSPPPPP) is a member of a group of peptide ligands designed to bind specifically the Abl-SH3 domain. It binds to Abl-SH3 with a Kd of 1.5 microM, whereas its affinity for the Fyn-SH3 domain is 273 microM. We have determined the crystal structure of the Abl-SH3 domain in complex with the high-affinity peptide ligand p41 at 1.6 A resolution. In the crystal structure, this peptide adopts a polyproline type II helix conformation through residue 5 to 10, and it binds in type I orientation to the Abl-SH3 domain. The tyrosine side-chain in position 4 of the peptide is hydrogen bonded to two residues in the RT-loop of the Abl-SH3 domain. The tight fit of this side-chain into the RT-loop pocket is enhanced by conformational adjustment of the main chain at position 5. The SH3 ligand peptides can be divided into two distinct parts. The N-terminal part binds to the SH3 domain in the region formed by the valley between the nSrc and RT-loops. It determines the specificity for different SH3 domains. The C-terminal part adopts a polyproline type II helix conformation. This binds to a well-conserved hydrophobic surface of the SH3 domain. Analysis of two "half"-peptides, corresponding to these ligand parts, shows that both are essential components for strong binding to the SH3 domains. The crystal structure of the Abl-SH3:p41 complex explains the high affinity and specificity of the p41 peptide towards the Abl-SH3 domain, and reveals principles that will be exploited for future design of small, high-affinity ligands to interfere efficiently with the in vivo regulation of Abl kinase activity.

Reviews - 1bbz mentioned but not cited (6)

  1. Noise in cellular signaling pathways: causes and effects. Ladbury JE, Arold ST. Trends Biochem Sci 37 173-178 (2012)
  2. The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Minutolo NG, Hollander EE, Powell DJ. Front Oncol 9 176 (2019)
  3. Chimeric Antigen Receptor T-Cells in B-Acute Lymphoblastic Leukemia: State of the Art and Future Directions. Greenbaum U, Mahadeo KM, Kebriaei P, Shpall EJ, Saini NY. Front Oncol 10 1594 (2020)
  4. Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Fu H, Chen H, Blazhynska M, Goulard Coderc de Lacam E, Szczepaniak F, Pavlova A, Shao X, Gumbart JC, Dehez F, Roux B, Cai W, Chipot C. Nat Protoc 17 1114-1141 (2022)
  5. Immunotherapy Against Gliomas: is the Breakthrough Near? Lukas RV, Wainwright DA, Horbinski CM, Iwamoto FM, Sonabend AM. Drugs 79 1839-1848 (2019)
  6. The Evolution of Chimeric Antigen Receptor T-Cell Therapy in Children, Adolescents and Young Adults with Acute Lymphoblastic Leukemia. Ragoonanan D, Sheikh IN, Gupta S, Khazal SJ, Tewari P, Petropoulos D, Li S, Mahadeo KM. Biomedicines 10 2286 (2022)

Articles - 1bbz mentioned but not cited (30)

  1. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, Labanieh L, Hulleman E, Woo PJ, Rietberg SP, Vogel H, Monje M, Mackall CL. Nat Med 24 572-579 (2018)
  2. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J Proteome Res 11 2982-2995 (2012)
  3. Standard binding free energies from computer simulations: What is the best strategy? Gumbart JC, Roux B, Chipot C. J Chem Theory Comput 9 794-802 (2013)
  4. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Chen X, Zhou H, Liu YB, Wang JF, Li H, Ung CY, Han LY, Cao ZW, Chen YZ. Br J Pharmacol 149 1092-1103 (2006)
  5. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T, Chen K, McLaughlin WA, Lu B, Wang W. PLoS Comput Biol 2 e1 (2006)
  6. Characterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains. Hou T, Xu Z, Zhang W, McLaughlin WA, Case DA, Xu Y, Wang W. Mol Cell Proteomics 8 639-649 (2009)
  7. Peptide-plane flipping in proteins. Hayward S. Protein Sci 10 2219-2227 (2001)
  8. A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Almeida-Souza L, Frank RAW, García-Nafría J, Colussi A, Gunawardana N, Johnson CM, Yu M, Howard G, Andrews B, Vallis Y, McMahon HT. Cell 174 325-337.e14 (2018)
  9. Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. Xu Q, Sudek S, McMullan D, Miller MD, Geierstanger B, Jones DH, Krishna SS, Spraggon G, Bursalay B, Abdubek P, Acosta C, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Trout CV, van den Bedem H, Weekes D, White A, Wolf G, Zubieta C, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure 17 303-313 (2009)
  10. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Zhou HX. Biophys J 91 3170-3181 (2006)
  11. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. Castellarin M, Sands C, Da T, Scholler J, Graham K, Buza E, Fraietta JA, Zhao Y, June CH. JCI Insight 5 136012 (2020)
  12. Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. Han Y, Liu C, Li G, Li J, Lv X, Shi H, Liu J, Liu S, Yan P, Wang S, Sun Y, Sun M. Am J Cancer Res 8 106-119 (2018)
  13. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, Simons BW, McLean Stevens A, Redell MS, Heslop HE, Mamonkin M, Brenner MK, Atilla E. J Immunother Cancer 8 e001229 (2020)
  14. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl. Palencia A, Camara-Artigas A, Pisabarro MT, Martinez JC, Luque I. J Biol Chem 285 2823-2833 (2010)
  15. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3. Casares S, Ab E, Eshuis H, Lopez-Mayorga O, van Nuland NA, Conejero-Lara F. BMC Struct Biol 7 22 (2007)
  16. Determinants of the SRC homology domain 3-like fold. D'Aquino JA, Ringe D. J Bacteriol 185 4081-4086 (2003)
  17. Evolutionary convergence and divergence in archaeal chromosomal proteins and Chromo-like domains from bacteria and eukaryotes. Kaur G, Iyer LM, Subramanian S, Aravind L. Sci Rep 8 6196 (2018)
  18. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci 15 795-807 (2006)
  19. Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. Thakur A, Scholler J, Schalk DL, June CH, Lum LG. J Cancer Res Clin Oncol 146 2007-2016 (2020)
  20. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function. Grover P, Shi H, Baumgartner M, Camacho CJ, Smithgall TE. PLoS One 10 e0133590 (2015)
  21. Proteome-wide detection of Abl1 SH3-binding peptides by integrating computational prediction and peptide microarray. Xu Z, Hou T, Li N, Xu Y, Wang W. Mol Cell Proteomics 11 O111.010389 (2012)
  22. Structure, stability, and flexibility of ribosomal protein L14e from Sulfolobus solfataricus. Edmondson SP, Turri J, Smith K, Clark A, Shriver JW. Biochemistry 48 5553-5562 (2009)
  23. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. J Mol Biol 434 167400 (2022)
  24. Conserved patterns and interactions in the unfolding transition state across SH3 domain structural homologues. Demakis C, Childers MC, Daggett V. Protein Sci 30 391-407 (2021)
  25. Impact of the selective A2AR and A2BR dual antagonist AB928/etrumadenant on CAR T cell function. Seifert M, Benmebarek MR, Briukhovetska D, Märkl F, Dörr J, Cadilha BL, Jobst J, Stock S, Andreu-Sanz D, Lorenzini T, Grünmeier R, Oner A, Obeck H, Majed L, Dhoqina D, Feinendegen M, Gottschlich A, Zhang J, Schindler U, Endres S, Kobold S. Br J Cancer 127 2175-2185 (2022)
  26. Quantitative description of a contractile macromolecular machine. Fraser A, Prokhorov NS, Jiao F, Pettitt BM, Scheuring S, Leiman PG. Sci Adv 7 eabf9601 (2021)
  27. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution. Chen L, Wang Y, Wells D, Toh D, Harold H, Zhou J, DiGiammarino E, Meehan EJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 844-848 (2006)
  28. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. Protein Sci 16 1257-1265 (2007)
  29. AKT inhibition generates potent polyfunctional clinical grade AUTO1 CAR T-cells, enhancing function and survival. Mehra V, Agliardi G, Dias Alves Pinto J, Shafat MS, Garai AC, Green L, Hotblack A, Arce Vargas F, Peggs KS, van der Waart AB, Dolstra H, Pule MA, Roddie C. J Immunother Cancer 11 e007002 (2023)
  30. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)


Reviews citing this publication (8)

  1. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew Chem Int Ed Engl 44 2852-2869 (2005)
  2. SH3 domain ligand binding: What's the consensus and where's the specificity? Saksela K, Permi P. FEBS Lett 586 2609-2614 (2012)
  3. Structure and dynamic regulation of Src-family kinases. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, Smithgall TE. Cell Mol Life Sci 65 3058-3073 (2008)
  4. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P, Bhattacharyya R. Prog Biophys Mol Biol 95 83-137 (2007)
  5. Structure and dynamic regulation of Abl kinases. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. J Biol Chem 288 5443-5450 (2013)
  6. Handedness preference and switching of peptide helices. Part I: Helices based on protein amino acids. De Zotti M, Formaggio F, Crisma M, Peggion C, Moretto A, Toniolo C. J Pept Sci 20 307-322 (2014)
  7. Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. Zafra-Ruano A, Luque I. FEBS Lett 586 2619-2630 (2012)
  8. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem Biol 6 R241-6 (1999)

Articles citing this publication (43)

  1. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T. Proc Natl Acad Sci U S A 96 12333-12338 (1999)
  2. CH-π hydrogen bonds in biological macromolecules. Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. Phys Chem Chem Phys 16 12648-12683 (2014)
  3. Stereospecific interactions of proline residues in protein structures and complexes. Bhattacharyya R, Chakrabarti P. J Mol Biol 331 925-940 (2003)
  4. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Mol Biol Cell 11 3963-3976 (2000)
  5. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. J Mol Biol 298 313-328 (2000)
  6. The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. Mano S, Nakamori C, Nito K, Kondo M, Nishimura M. Plant J 47 604-618 (2006)
  7. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Morell M, Espargaró A, Avilés FX, Ventura S. Proteomics 7 1023-1036 (2007)
  8. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc Natl Acad Sci U S A 99 14053-14058 (2002)
  9. Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Leal A, Huehne K, Bauer F, Sticht H, Berger P, Suter U, Morera B, Del Valle G, Lupski JR, Ekici A, Pasutto F, Endele S, Barrantes R, Berghoff C, Berghoff M, Neundörfer B, Heuss D, Dorn T, Young P, Santolin L, Uhlmann T, Meisterernst M, Sereda MW, Sereda M, Stassart RM, Meyer zu Horste G, Nave KA, Reis A, Rautenstrauss B. Neurogenetics 10 275-287 (2009)
  10. Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K, Permi P. Proc Natl Acad Sci U S A 107 21743-21748 (2010)
  11. Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis. Anggono V, Robinson PJ. J Neurochem 102 931-943 (2007)
  12. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Palencia A, Cobos ES, Mateo PL, Martínez JC, Luque I. J Mol Biol 336 527-537 (2004)
  13. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J Mol Biol 293 1097-1106 (1999)
  14. Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H. Protein Sci 14 2487-2498 (2005)
  15. Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Morell M, Espargaro A, Aviles FX, Ventura S. Nat Protoc 3 22-33 (2008)
  16. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Hochrein JM, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Protein Sci 15 65-73 (2006)
  17. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J Mol Biol 335 619-629 (2004)
  18. Virtual interaction profiles of proteins. Wollacott AM, Desjarlais JR. J Mol Biol 313 317-342 (2001)
  19. Enhanced SH3/linker interaction overcomes Abl kinase activation by gatekeeper and myristic acid binding pocket mutations and increases sensitivity to small molecule inhibitors. Panjarian S, Iacob RE, Chen S, Wales TE, Engen JR, Smithgall TE. J Biol Chem 288 6116-6129 (2013)
  20. Isolation of receptor-ligand pairs by capture of long-lived multivalent interaction complexes. de Wildt RM, Tomlinson IM, Ong JL, Holliger P. Proc Natl Acad Sci U S A 99 8530-8535 (2002)
  21. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J Mol Biol 365 1517-1532 (2007)
  22. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. Cobos ES, Pisabarro MT, Vega MC, Lacroix E, Serrano L, Ruiz-Sanz J, Martinez JC. J Mol Biol 342 355-365 (2004)
  23. A molecular dynamics approach to study the importance of solvent in protein interactions. Samsonov S, Teyra J, Pisabarro MT. Proteins 73 515-525 (2008)
  24. Free Energy Calculations of Mutations Involving a Tightly Bound Water Molecule and Ligand Substitutions in a Ligand-Protein Complex. García-Sosa AT, Mancera RL. Mol Inform 29 589-600 (2010)
  25. Monitoring the interference of protein-protein interactions in vivo by bimolecular fluorescence complementation: the DnaK case. Morell M, Czihal P, Hoffmann R, Otvos L, Avilés FX, Ventura S. Proteomics 8 3433-3442 (2008)
  26. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl. Tzeng SR, Lou YC, Pai MT, Jain ML, Cheng JW. J Biomol NMR 16 303-312 (2000)
  27. The high-resolution NMR structure of a single-chain chimeric protein mimicking a SH3-peptide complex. Candel AM, Conejero-Lara F, Martinez JC, van Nuland NA, Bruix M. FEBS Lett 581 687-692 (2007)
  28. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. Bauer F, Sticht H. FEBS Lett 581 1555-1560 (2007)
  29. A binding event converted into a folding event. Martín-Sierra FM, Candel AM, Casares S, Filimonov VV, Martínez JC, Conejero-Lara F. FEBS Lett 553 328-332 (2003)
  30. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Villanueva J, Villegas V, Querol E, Avilés FX, Serrano L. J Mass Spectrom 37 974-984 (2002)
  31. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein. Candel AM, van Nuland NA, Martin-Sierra FM, Martinez JC, Conejero-Lara F. J Mol Biol 377 117-135 (2008)
  32. High-resolution crystal structure of spectrin SH3 domain fused with a proline-rich peptide. Gushchina LV, Gabdulkhakov AG, Nikonov SV, Filimonov VV. J Biomol Struct Dyn 29 485-495 (2011)
  33. Prolylproline unit in model peptides and in fragments from databases. Hudáky I, Perczel A. Proteins 70 1389-1407 (2008)
  34. Ligand screening by exoproteolysis and mass spectrometry in combination with computer modelling. Villanueva J, Fernández-Ballester G, Querol E, Aviles FX, Serrano L. J Mol Biol 330 1039-1048 (2003)
  35. Parallel Chemical Protein Synthesis on a Surface Enables the Rapid Analysis of the Phosphoregulation of SH3 Domains. Zitterbart R, Seitz O. Angew Chem Int Ed Engl 55 7252-7256 (2016)
  36. c-Abl Tyrosine Kinase Adopts Multiple Active Conformational States in Solution. Badger J, Grover P, Shi H, Panjarian SB, Engen JR, Smithgall TE, Makowski L. Biochemistry 55 3251-3260 (2016)
  37. Crystal structure of human osteoclast stimulating factor. Tong S, Zhou H, Gao Y, Zhu Z, Zhang X, Teng M, Niu L. Proteins 75 245-251 (2009)
  38. Assay development and high-throughput screening of small molecular c-Abl kinase activators. Cottom J, Hofmann G, Siegfried B, Yang J, Zhang H, Yi T, Ho TF, Quinn C, Wang DY, Johanson K, Ames RS, Li H. J Biomol Screen 16 53-64 (2011)
  39. Molecular and structural characterization of the SH3 domain of AHI-1 in regulation of cellular resistance of BCR-ABL(+) chronic myeloid leukemia cells to tyrosine kinase inhibitors. Liu X, Chen M, Lobo P, An J, Grace Cheng SW, Moradian A, Morin GB, Van Petegem F, Jiang X. Proteomics 12 2094-2106 (2012)
  40. Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Santamaria F, Wu Z, Boulègue C, Pál G, Lu W. J Mol Recognit 16 131-138 (2003)
  41. Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Johansson J, Lidéus S, Frykholm C, Gunnarsson C, Mihalic F, Gudmundsson S, Ekvall S, Molin AM, Pham M, Vihinen M, Lagerstedt-Robinson K, Nordgren A, Jemth P, Ameur A, Annerén G, Wilbe M, Bondeson ML. Eur J Hum Genet (2023)
  42. Platelet-derived growth factor receptor beta activates Abl2 via direct binding and phosphorylation. Wu K, Wu H, Lyu W, Kim Y, Furdui CM, Anderson KS, Koleske AJ. J Biol Chem 297 100883 (2021)
  43. Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. Plucarová J, Jansen S, Narasimhan S, Laníková A, Lewitzky M, Feller SM, Žídek L. J Biol Chem 298 102384 (2022)


Related citations provided by authors (2)

  1. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain.. Pisabarro MT, Serrano L Biochemistry 35 10634-40 (1996)
  2. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides.. Musacchio A, Saraste M, Wilmanns M Nat Struct Biol 1 546-51 (1994)