148l Citations

A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme.

Science 262 2030-3 (1993)
Cited: 109 times
EuropePMC logo PMID: 8266098

Abstract

The glycosyl-enzyme intermediate in lysozyme action has long been considered to be an oxocarbonium ion, although precedent from other glycosidases and theoretical considerations suggest it should be a covalent enzyme-substrate adduct. The mutation of threonine 26 to glutamic acid in the active site cleft of phage T4 lysozyme (T4L) produced an enzyme that cleaved the cell wall of Escherichia coli but left the product covalently bound to the enzyme. The crystalline complex was nonisomorphous with wild-type T4L, and analysis of its structure showed a covalent linkage between the product and the newly introduced glutamic acid 26. The covalently linked sugar ring was substantially distorted, suggesting that distortion of the substrate toward the transition state is important for catalysis, as originally proposed by Phillips. It is also postulated that the adduct formed by the mutant is an intermediate, consistent with a double displacement mechanism of action in which the glycosidic linkage is cleaved with retention of configuration as originally proposed by Koshland. The peptide part of the cell wall fragment displays extensive hydrogen-bonding interactions with the carboxyl-terminal domain of the enzyme, consistent with previous studies of mutations in T4L.

Articles - 148l mentioned but not cited (17)

  1. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Cheng G, Qian B, Samudrala R, Baker D. Nucleic Acids Res 33 5861-5867 (2005)
  2. Genomic and proteomic analysis of invertebrate iridovirus type 9. Wong CK, Young VL, Kleffmann T, Ward VK. J Virol 85 7900-7911 (2011)
  3. Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme. Dessau M, Goldhill D, McBride R, Turner PE, Modis Y. PLoS Genet 8 e1003102 (2012)
  4. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants. Lee MC, Deng J, Briggs JM, Duan Y. Biophys J 88 3133-3146 (2005)
  5. Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering. Choi Y, Olsen TJ, Sims PC, Moody IS, Corso BL, Dang MN, Weiss GA, Collins PG. Nano Lett 13 625-631 (2013)
  6. ProPhylER: a curated online resource for protein function and structure based on evolutionary constraint analyses. Binkley J, Karra K, Kirby A, Hosobuchi M, Stone EA, Sidow A. Genome Res 20 142-154 (2010)
  7. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. Patzer SI, Albrecht R, Braun V, Zeth K. J Biol Chem 287 23381-23396 (2012)
  8. Large language models generate functional protein sequences across diverse families. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL, Xiong C, Sun ZZ, Socher R, Fraser JS, Naik N. Nat Biotechnol 41 1099-1106 (2023)
  9. Resolving dynamics and function of transient states in single enzyme molecules. Sanabria H, Rodnin D, Hemmen K, Peulen TO, Felekyan S, Fleissner MR, Dimura M, Koberling F, Kühnemuth R, Hubbell W, Gohlke H, Seidel CAM. Nat Commun 11 1231 (2020)
  10. Neutron structure of the T26H mutant of T4 phage lysozyme provides insight into the catalytic activity of the mutant enzyme and how it differs from that of wild type. Hiromoto T, Meilleur F, Shimizu R, Shibazaki C, Adachi M, Tamada T, Kuroki R. Protein Sci 26 1953-1963 (2017)
  11. The mechanism behind the selection of two different cleavage sites in NAG-NAM polymers. Mihelič M, Vlahoviček-Kahlina K, Renko M, Mesnage S, Doberšek A, Taler-Verčič A, Jakas A, Turk D. IUCrJ 4 185-198 (2017)
  12. Single molecule recordings of lysozyme activity. Choi Y, Weiss GA, Collins PG. Phys Chem Chem Phys 15 14879-14895 (2013)
  13. Structure and Function of the T4 Spackle Protein Gp61.3. Kanamaru S, Uchida K, Nemoto M, Fraser A, Arisaka F, Leiman PG. Viruses 12 E1070 (2020)
  14. GPU-based detection of protein cavities using Gaussian surfaces. Dias SED, Martins AM, Nguyen QT, Gomes AJP. BMC Bioinformatics 18 493 (2017)
  15. Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus. Borišek J, Pintar S, Ogrizek M, Grdadolnik SG, Hodnik V, Turk D, Perdih A, Novič M. J Enzyme Inhib Med Chem 33 1239-1247 (2018)
  16. Module walking using an SH3-like cell-wall-binding domain leads to a new GH184 family of muramidases. Moroz OV, Blagova E, Lebedev AA, Skov LK, Pache RA, Schnorr KM, Kiemer L, Friis EP, Nymand-Grarup S, Ming L, Ye L, Klausen M, Cohn MT, Schmidt EGW, Davies GJ, Wilson KS. Acta Crystallogr D Struct Biol 79 706-720 (2023)
  17. Spectroscopic properties of light-chain derivatives of murine MOPC-315 immunoglobulin A. Zidovetzki R, Farver O, Pecht I. Eur J Biochem 114 97-100 (1981)


Reviews citing this publication (16)

  1. Structures and mechanisms of glycosyl hydrolases. Davies G, Henrissat B. Structure 3 853-859 (1995)
  2. Structural and sequence-based classification of glycoside hydrolases. Henrissat B, Davies G. Curr Opin Struct Biol 7 637-644 (1997)
  3. Mechanisms of enzymatic glycoside hydrolysis. McCarter JD, Withers SG. Curr Opin Struct Biol 4 885-892 (1994)
  4. Morphogenesis of the T4 tail and tail fibers. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Virol J 7 355 (2010)
  5. Challenges in enzyme mechanism and energetics. Kraut DA, Carroll KS, Herschlag D. Annu Rev Biochem 72 517-571 (2003)
  6. Lessons from the lysozyme of phage T4. Baase WA, Liu L, Tronrud DE, Matthews BW. Protein Sci 19 631-641 (2010)
  7. Mutagenesis of glycosidases. Ly HD, Withers SG. Annu Rev Biochem 68 487-522 (1999)
  8. The bacteriophage T4 DNA injection machine. Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG. Curr Opin Struct Biol 14 171-180 (2004)
  9. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Monzingo AF, Marcotte EM, Hart PJ, Robertus JD. Nat Struct Biol 3 133-140 (1996)
  10. Molecular divergence of lysozymes and alpha-lactalbumin. Qasba PK, Kumar S. Crit Rev Biochem Mol Biol 32 255-306 (1997)
  11. Mechanism of catalysis by retaining beta-glycosyl hydrolases. White A, Rose DR. Curr Opin Struct Biol 7 645-651 (1997)
  12. Hierarchical classification of glycoside hydrolases. Naumoff DG. Biochemistry (Mosc) 76 622-635 (2011)
  13. Sizing up single-molecule enzymatic conformational dynamics. Lu HP. Chem Soc Rev 43 1118-1143 (2014)
  14. Molecular architecture of bacteriophage T4. Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Biochemistry (Mosc) 69 1190-1202 (2004)
  15. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities. Neumann P, Tittmann K. Curr Opin Struct Biol 29 122-133 (2014)
  16. Revealing time bunching effect in single-molecule enzyme conformational dynamics. Lu HP. Phys Chem Chem Phys 13 6734-6749 (2011)

Articles citing this publication (76)

  1. A relationship between protein stability and protein function. Shoichet BK, Baase WA, Kuroki R, Matthews BW. Proc Natl Acad Sci U S A 92 452-456 (1995)
  2. Structure of the cell-puncturing device of bacteriophage T4. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG. Nature 415 553-557 (2002)
  3. Generalized correlation for biomolecular dynamics. Lange OF, Grubmüller H. Proteins 62 1053-1061 (2006)
  4. Crystal structure of hyaluronidase, a major allergen of bee venom. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Structure 8 1025-1035 (2000)
  5. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Pares S, Mouz N, Pétillot Y, Hakenbeck R, Dideberg O. Nat Struct Biol 3 284-289 (1996)
  6. Chemical selection for catalysis in combinatorial antibody libraries. Janda KD, Lo LC, Lo CH, Sim MM, Wang R, Wong CH, Lerner RA. Science 275 945-948 (1997)
  7. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. de Groot BL, Hayward S, van Aalten DM, Amadei A, Berendsen HJ. Proteins 31 116-127 (1998)
  8. Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. White A, Tull D, Johns K, Withers SG, Rose DR. Nat Struct Biol 3 149-154 (1996)
  9. The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the "goose-type" lysozymes lack a catalytic aspartate residue. Weaver LH, Grütter MG, Matthews BW. J Mol Biol 245 54-68 (1995)
  10. Structural engineering of a phage lysin that targets gram-negative pathogens. Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK. Proc Natl Acad Sci U S A 109 9857-9862 (2012)
  11. Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Moak M, Molineux IJ. Mol Microbiol 37 345-355 (2000)
  12. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. Whitney JC, Chou S, Russell AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD. J Biol Chem 288 26616-26624 (2013)
  13. X-ray structure of an anti-fungal chitosanase from streptomyces N174. Marcotte EM, Monzingo AF, Ernst SR, Brzezinski R, Robertus JD. Nat Struct Biol 3 155-162 (1996)
  14. Full correlation analysis of conformational protein dynamics. Lange OF, Grubmüller H. Proteins 70 1294-1312 (2008)
  15. Conservation of solvent-binding sites in 10 crystal forms of T4 lysozyme. Zhang XJ, Matthews BW. Protein Sci 3 1031-1039 (1994)
  16. High-resolution crystal structure of Arthrobacter aurescens chondroitin AC lyase: an enzyme-substrate complex defines the catalytic mechanism. Lunin VV, Li Y, Linhardt RJ, Miyazono H, Kyogashima M, Kaneko T, Bell AW, Cygler M. J Mol Biol 337 367-386 (2004)
  17. Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Kuroki R, Weaver LH, Matthews BW. Proc Natl Acad Sci U S A 96 8949-8954 (1999)
  18. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. Sigala PA, Kraut DA, Caaveiro JM, Pybus B, Ruben EA, Ringe D, Petsko GA, Herschlag D. J Am Chem Soc 130 13696-13708 (2008)
  19. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW. Structure 7 1167-1180 (1999)
  20. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR. Goto NK, Skrynnikov NR, Dahlquist FW, Kay LE. J Mol Biol 308 745-764 (2001)
  21. Stereochemical course of the hydrolysis reaction catalyzed by chitinases A1 and D from Bacillus circulans WL-12. Armand S, Tomita H, Heyraud A, Gey C, Watanabe T, Henrissat B. FEBS Lett 343 177-180 (1994)
  22. The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes. Thunnissen AM, Isaacs NW, Dijkstra BW. Proteins 22 245-258 (1995)
  23. Structure-based design of a lysozyme with altered catalytic activity. Kuroki R, Weaver LH, Matthews BW. Nat Struct Biol 2 1007-1011 (1995)
  24. Context-dependent protein stabilization by methionine-to-leucine substitution shown in T4 lysozyme. Lipscomb LA, Gassner NC, Snow SD, Eldridge AM, Baase WA, Drew DL, Matthews BW. Protein Sci 7 765-773 (1998)
  25. Crystal structures of penicillin-binding protein 6 from Escherichia coli. Chen Y, Zhang W, Shi Q, Hesek D, Lee M, Mobashery S, Shoichet BK. J Am Chem Soc 131 14345-14354 (2009)
  26. Structural snapshots of heparin depolymerization by heparin lyase I. Han YH, Garron ML, Kim HY, Kim WS, Zhang Z, Ryu KS, Shaya D, Xiao Z, Cheong C, Kim YS, Linhardt RJ, Jeon YH, Cygler M. J Biol Chem 284 34019-34027 (2009)
  27. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. Peulen TO, Opanasyuk O, Seidel CAM. J Phys Chem B 121 8211-8241 (2017)
  28. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. Wray JW, Baase WA, Lindstrom JD, Weaver LH, Poteete AR, Matthews BW. J Mol Biol 292 1111-1120 (1999)
  29. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. Kombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, van Heuvel Y, Dürig N, Lin CW, Kallio PT, Aebi M, Künzler M. ISME J 13 588-602 (2019)
  30. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. Kawamura S, Ohno K, Ohkuma M, Chijiiwa Y, Torikata T. J Biochem 140 75-85 (2006)
  31. Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose. Yoshioka Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M. J Mol Biol 271 619-628 (1997)
  32. Alteration of T4 lysozyme structure by second-site reversion of deleterious mutations. Poteete AR, Rennell D, Bouvier SE, Hardy LW. Protein Sci 6 2418-2425 (1997)
  33. Roles of catalytic residues in alpha-amylases as evidenced by the structures of the product-complexed mutants of a maltotetraose-forming amylase. Hasegawa K, Kubota M, Matsuura Y. Protein Eng 12 819-824 (1999)
  34. Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily. Lacombe-Harvey ME, Fukamizo T, Gagnon J, Ghinet MG, Dennhart N, Letzel T, Brzezinski R. FEBS J 276 857-869 (2009)
  35. Direct observation of T4 lysozyme hinge-bending motion by fluorescence correlation spectroscopy. Yirdaw RB, McHaourab HS. Biophys J 103 1525-1536 (2012)
  36. Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner. Jones Brunette AM, Farrens DL. Biochemistry 53 6290-6301 (2014)
  37. Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Kim HW, Ishikawa K. Biochem J 437 223-230 (2011)
  38. Detecting coupled collective motions in protein by independent subspace analysis. Sakuraba S, Joti Y, Kitao A. J Chem Phys 133 185102 (2010)
  39. Determination of the orientation of T4 lysozyme vectorially bound to a planar-supported lipid bilayer using site-directed spin labeling. Jacobsen K, Oga S, Hubbell WL, Risse T. Biophys J 88 4351-4365 (2005)
  40. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. Barth A, Opanasyuk O, Peulen TO, Felekyan S, Kalinin S, Sanabria H, Seidel CAM. J Chem Phys 156 141501 (2022)
  41. Action patterns and mapping of the substrate-binding regions of endo-(1-->5)-alpha-L-arabinanases from Aspergillus niger and Aspergillus aculeatus. Pitson SM, Voragen AG, Vincken JP, Beldman G. Carbohydr Res 303 207-218 (1997)
  42. Structural basis of superinfection exclusion by bacteriophage T4 Spackle. Shi K, Oakland JT, Kurniawan F, Moeller NH, Banerjee S, Aihara H. Commun Biol 3 691 (2020)
  43. The primary structure of cassowary (Casuarius casuarius) goose type lysozyme. Thammasirirak S, Torikata T, Takami K, Murata K, Araki T. Biosci Biotechnol Biochem 66 147-156 (2002)
  44. Analysis of the solution conformations of T4 lysozyme by paramagnetic NMR spectroscopy. Chen JL, Yang Y, Zhang LL, Liang H, Huber T, Su XC, Otting G. Phys Chem Chem Phys 18 5850-5859 (2016)
  45. A glycosidase antibody elicited against a chair-like transition state analog by in vitro immunization. Yu J, Choi SY, Moon KD, Chung HH, Youn HJ, Jeong S, Park H, Schultz PG. Proc Natl Acad Sci U S A 95 2880-2884 (1998)
  46. Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d. Rutkiewicz-Krotewicz M, Pietrzyk-Brzezinska AJ, Sekula B, Cieśliński H, Wierzbicka-Woś A, Kur J, Bujacz A. Acta Crystallogr D Struct Biol 72 1049-1061 (2016)
  47. Structural/functional assignment of unknown bacteriophage T4 proteins by iterative database searches. Kawabata T, Arisaka F, Nishikawa K. Gene 259 223-233 (2000)
  48. Details of the partial unfolding of T4 lysozyme on quartz using site-directed spin labeling. Jacobsen K, Hubbell WL, Ernst OP, Risse T. Angew Chem Int Ed Engl 45 3874-3877 (2006)
  49. Structural and functional effect of Trp-62-->Gly and Asp-101-->Gly substitutions on substrate-binding modes of mutant hen egg-white lysozymes. Maenaka K, Matsushima M, Kawai G, Kidera A, Watanabe K, Kuroki R, Kumagai I. Biochem J 333 ( Pt 1) 71-76 (1998)
  50. Investigations of the interactions of saccharides with the lysozyme from bacteriophage lambda. Duewel HS, Daub E, Honek JF. Biochim Biophys Acta 1247 149-158 (1995)
  51. Helicobacter pylori expresses an autolytic enzyme: gene identification, cloning, and theoretical protein structure. Marsich E, Zuccato P, Rizzi S, Vetere A, Tonin E, Paoletti S. J Bacteriol 184 6270-6279 (2002)
  52. On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca2+. Córdula CR, Lima MA, Shinjo SK, Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Verli H, Yates EA, Rudd TR, Pinhal MA, Toma L, Dietrich CP, Nader HB, Tersariol IL. Mol Biosyst 10 54-64 (2014)
  53. Biochemistry. Enzymes in coherent motion. Lu HP. Science 335 300-301 (2012)
  54. Converting T4 phage lysozyme into a transglycosidase. Kuroki R, Morimoto K, Matthews BW. Ann N Y Acad Sci 864 362-365 (1998)
  55. Phage-encoded cationic antimicrobial peptide required for lysis. Holt A, Cahill J, Ramsey J, Martin C, O'Leary C, Moreland R, Maddox LT, Galbadage T, Sharan R, Sule P, Cirillo JD, Young R. J Bacteriol 204 JB0021421 (2021)
  56. The structure of DLP12 endolysin exhibiting alternate loop conformation and comparative analysis with other endolysins. Babu K, Arulandu A, Sankaran K. Proteins 86 210-217 (2018)
  57. Incorporating the amino acid properties to predict the significance of missense mutations. Lee TC, Lee AS, Li KB. Amino Acids 35 615-626 (2008)
  58. Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase. Akeboshi H, Tonozuka T, Furukawa T, Ichikawa K, Aoki H, Shimonishi A, Nishikawa A, Sakano Y. Eur J Biochem 271 4420-4427 (2004)
  59. Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain. Vázquez R, Seoane-Blanco M, Rivero-Buceta V, Ruiz S, van Raaij MJ, García P. Acta Crystallogr D Struct Biol 78 435-454 (2022)
  60. An NMR and MD study of complexes of bacteriophage lambda lysozyme with tetra- and hexa-N-acetylchitohexaose. Turupcu A, Bowen AM, Di Paolo A, Matagne A, Oostenbrink C, Redfield C, Smith LJ. Proteins 88 82-93 (2020)
  61. New sub-family of lysozyme-like proteins shows no catalytic activity: crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium. Michalska K, Brown RN, Li H, Jedrzejczak R, Niemann GS, Heffron F, Cort JR, Adkins JN, Babnigg G, Joachimiak A. J Struct Funct Genomics 14 1-10 (2013)
  62. Preparation of 2-deoxy-2-C-p-tolylsulfonyl-beta-D-glucopyranosyl p-tolylsulfones having non-chair conformation and their elimination reactions. Sakakibara T, Suganuma T, Kajihara Y. Chem Commun (Camb) 3568-3570 (2007)
  63. Revealing structural views of biology. Goodsell DS, Burley SK, Berman HM. Biopolymers 99 817-824 (2013)
  64. The Molecular Basis for Escherichia coli O157:H7 Phage FAHEc1 Endolysin Function and Protein Engineering to Increase Thermal Stability. Love MJ, Coombes D, Manners SH, Abeysekera GS, Billington C, Dobson RCJ. Viruses 13 1101 (2021)
  65. The pKa values of the catalytic residues in the retaining glycoside hydrolase T26H mutant of T4 lysozyme. Brockerman JA, Okon M, Withers SG, McIntosh LP. Protein Sci 28 620-632 (2019)
  66. A helix initiation signal in T4 lysozyme identified by polyalanine mutagenesis. Zhang XJ, Baase WA, Matthews BW. Biophys Chem 101-102 43-56 (2002)
  67. Different Single-Enzyme Conformational Dynamics upon Binding Hydrolyzable or Nonhydrolyzable Ligands. Woo SO, Oh M, Alhalhooly L, Farmakes J, Rajapakse AJ, Yang Z, Collins PG, Choi Y. J Phys Chem B 125 5750-5756 (2021)
  68. Comment Illuminating the ancient retainer. Kirby AJ. Nat Struct Biol 3 107-108 (1996)
  69. Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus. Hyun Y, Baek Y, Lee C, Ki N, Ahn J, Ryu S, Ha NC. Mol Cells 44 517-528 (2021)
  70. Substrate recognition mechanism of a glycosyltrehalose trehalohydrolase from Sulfolobus solfataricus KM1. Okazaki N, Tamada T, Feese MD, Kato M, Miura Y, Komeda T, Kobayashi K, Kondo K, Blaber M, Kuroki R. Protein Sci 21 539-552 (2012)
  71. Automated Path Searching Reveals the Mechanism of Hydrolysis Enhancement by T4 Lysozyme Mutants. Xi K, Zhu L. Int J Mol Sci 23 14628 (2022)
  72. Connexins 26, 32 and 43 are expressed in virgin, pregnant and lactating mammary glands. Pérez-Armendariz EM, Luna J, Aceves C, Tápia D. Dev Growth Differ 37 421-431 (1995)
  73. Control of the catalytic mechanism of an enzyme by amino acid substitution. Morimoto K, Kuroki R, Matthews BW. Ann N Y Acad Sci 799 56-60 (1996)
  74. Creation of Cross-Linked Crystals With Intermolecular Disulfide Bonds Connecting Symmetry-Related Molecules Allows Retention of Tertiary Structure in Different Solvent Conditions. Hiromoto T, Ikura T, Honjo E, Blaber M, Kuroki R, Tamada T. Front Mol Biosci 9 908394 (2022)
  75. Molecular modelling studies of lysozyme catalysed hydrolysis of synthetic substrates. Tsai CS. Int J Biochem Cell Biol 29 325-334 (1997)
  76. Synthesis and activity of a potent alpha-glucosidase inhibitor, (1R, 6R, 8S)-cis-1,6-dihydroxypyrrolizidine, and its isomer. Jung KE, Kang YK, Kim DJ, Park SW. Arch Pharm Res 20 346-350 (1997)


Related citations provided by authors (1)

  1. Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution. Weaver LH, Matthews BW J. Mol. Biol. 193 189- (1987)