spacer
spacer

PDBsum entry 5d6h

Go to PDB code: 
protein Protein-protein interface(s) links
Chaperone/protein transport PDB id
5d6h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
223 a.a.
98 a.a.
Waters ×158
PDB id:
5d6h
Name: Chaperone/protein transport
Title: Crystal structure of csuc-csua/b chaperone-major subunit pre-assembly complex from csu biofilm-mediating pili of acinetobacter baumannii
Structure: Csuc. Chain: a. Fragment: unp residues 35-277. Engineered: yes. Csua/b. Chain: b. Fragment: unp residues 38-180. Engineered: yes
Source: Acinetobacter baumannii. Organism_taxid: 470. Gene: csuc. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Expression_system_variant: ai. Gene: csua/b.
Resolution:
2.40Å     R-factor:   0.224     R-free:   0.266
Authors: N.A.Pakharukova,M.Tuitilla,S.Paavilainen,A.Zavialov
Key ref: N.Pakharukova et al. (2015). Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. Plos Pathog, 11, e1005269. PubMed id: 26587649 DOI: 10.1371/journal.ppat.1005269
Date:
12-Aug-15     Release date:   04-Nov-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q6XBY4  (Q6XBY4_ACIBA) -  CsuC from Acinetobacter baumannii
Seq:
Struc:
277 a.a.
223 a.a.
Protein chain
Pfam   ArchSchema ?
Q6XBY7  (Q6XBY7_ACIBA) -  CsuA/B from Acinetobacter baumannii
Seq:
Struc:
180 a.a.
98 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1371/journal.ppat.1005269 Plos Pathog 11:e1005269 (2015)
PubMed id: 26587649  
 
 
Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis.
N.Pakharukova, J.A.Garnett, M.Tuittila, S.Paavilainen, M.Diallo, Y.Xu, S.J.Matthews, A.V.Zavialov.
 
  ABSTRACT  
 
Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.
 

 

spacer

spacer