|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
214 a.a.
|
 |
|
|
|
|
|
|
|
215 a.a.
|
 |
|
|
|
|
|
|
|
129 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Complex(antibody-antigen)
|
 |
|
Title:
|
 |
Structure of an antibody-antigen complex. Crystal structure of the hy/hel-10 fab-lysozyme complex
|
|
Structure:
|
 |
Hyhel-10 igg1 fab (light chain). Chain: l. Engineered: yes. Hyhel-10 igg1 fab (heavy chain). Chain: h. Engineered: yes. Hen egg white lysozyme. Chain: y. Engineered: yes
|
|
Source:
|
 |
Mus musculus. House mouse. Organism_taxid: 10090. Gallus gallus. Chicken. Organism_taxid: 9031
|
|
Biol. unit:
|
 |
Trimer (from
)
|
|
Resolution:
|
 |
|
|
Authors:
|
 |
E.A.Padlan,D.R.Davies
|
|
Key ref:
|
 |
E.A.Padlan
et al.
(1989).
Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex.
Proc Natl Acad Sci U S A,
86,
5938-5942.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
11-Aug-88
|
Release date:
|
12-Jul-89
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain Y:
E.C.3.2.1.17
- lysozyme.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of the 1,4-beta-linkages between N-acetyl-D-glucosamine and N-acetylmuramic acid in peptidoglycan heteropolymers of the prokaryotes cell walls.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
86:5938-5942
(1989)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex.
|
|
E.A.Padlan,
E.W.Silverton,
S.Sheriff,
G.H.Cohen,
S.J.Smith-Gill,
D.R.Davies.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of the complex of the anti-lysozyme HyHEL-10 Fab and hen
egg white lysozyme has been determined to a nominal resolution of 3.0 A. The
antigenic determinant (epitope) on the lysozyme is discontinuous, consisting of
residues from four different regions of the linear sequence. It consists of the
exposed residues of an alpha-helix together with surrounding amino acids. The
epitope crosses the active-site cleft and includes a tryptophan located within
this cleft. The combining site of the antibody is mostly flat with a
protuberance made up of two tyrosines that penetrate the cleft. All six
complementarity-determining regions of the Fab contribute at least one residue
to the binding; one residue from the framework is also in contact with the
lysozyme. The contacting residues on the antibody contain a disproportionate
number of aromatic side chains. The antibody-antigen contact mainly involves
hydrogen bonds and van der Waals interactions; there is one ion-pair interaction
but it is weak.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Pomés
(2010).
Relevant B cell epitopes in allergic disease.
|
| |
Int Arch Allergy Immunol,
152,
1.
|
 |
|
|
|
|
 |
A.Yokota,
K.Tsumoto,
M.Shiroishi,
T.Nakanishi,
H.Kondo,
and
I.Kumagai
(2010).
Contribution of asparagine residues to the stabilization of a proteinaceous antigen-antibody complex, HyHEL-10-hen egg white lysozyme.
|
| |
J Biol Chem,
285,
7686-7696.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.L.Cox,
J.Stolp,
N.L.Hallahan,
J.Counotte,
W.Zhang,
D.V.Serreze,
A.Basten,
and
P.A.Silveira
(2010).
Enhanced responsiveness to T-cell help causes loss of B-lymphocyte tolerance to a β-cell neo-self-antigen in type 1 diabetes prone NOD mice.
|
| |
Eur J Immunol,
40,
3413-3425.
|
 |
|
|
|
|
 |
T.D.Chan,
S.Gardam,
D.Gatto,
V.M.Turner,
J.Silke,
and
R.Brink
(2010).
In vivo control of B-cell survival and antigen-specific B-cell responses.
|
| |
Immunol Rev,
237,
90.
|
 |
|
|
|
|
 |
C.E.Leysath,
A.F.Monzingo,
J.A.Maynard,
J.Barnett,
G.Georgiou,
B.L.Iverson,
and
J.D.Robertus
(2009).
Crystal structure of the engineered neutralizing antibody M18 complexed to domain 4 of the anthrax protective antigen.
|
| |
J Mol Biol,
387,
680-693.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.L.Randall,
T.Lambe,
A.Johnson,
B.Treanor,
E.Kucharska,
H.Domaschenz,
B.Whittle,
L.E.Tze,
A.Enders,
T.L.Crockford,
T.Bouriez-Jones,
D.Alston,
J.G.Cyster,
M.J.Lenardo,
F.Mackay,
E.K.Deenick,
S.G.Tangye,
T.D.Chan,
T.Camidge,
R.Brink,
C.G.Vinuesa,
F.D.Batista,
R.J.Cornall,
and
C.C.Goodnow
(2009).
Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production.
|
| |
Nat Immunol,
10,
1283-1291.
|
 |
|
|
|
|
 |
S.Mohan,
K.Kourentzi,
K.A.Schick,
C.Uehara,
C.A.Lipschultz,
M.Acchione,
M.E.Desantis,
S.J.Smith-Gill,
and
R.C.Willson
(2009).
Association energetics of cross-reactive and specific antibodies.
|
| |
Biochemistry,
48,
1390-1398.
|
 |
|
|
|
|
 |
K.Kourentzi,
M.Srinivasan,
S.J.Smith-Gill,
and
R.C.Willson
(2008).
Conformational flexibility and kinetic complexity in antibody-antigen interactions.
|
| |
J Mol Recognit,
21,
114-121.
|
 |
|
|
|
|
 |
M.Garcia-Boronat,
C.M.Diez-Rivero,
E.L.Reinherz,
and
P.A.Reche
(2008).
PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery.
|
| |
Nucleic Acids Res,
36,
W35-W41.
|
 |
|
|
|
|
 |
R.Brink,
T.G.Phan,
D.Paus,
and
T.D.Chan
(2008).
Visualizing the effects of antigen affinity on T-dependent B-cell differentiation.
|
| |
Immunol Cell Biol,
86,
31-39.
|
 |
|
|
|
|
 |
T.Nakanishi,
K.Tsumoto,
A.Yokota,
H.Kondo,
and
I.Kumagai
(2008).
Critical contribution of VH-VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10.
|
| |
Protein Sci,
17,
261-270.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Sinha,
Y.Li,
C.A.Lipschultz,
and
S.J.Smith-Gill
(2007).
Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra- and inter-molecular salt bridges.
|
| |
Cell Biochem Biophys,
47,
361-375.
|
 |
|
|
|
|
 |
D.Paus,
T.G.Phan,
T.D.Chan,
S.Gardam,
A.Basten,
and
R.Brink
(2006).
Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation.
|
| |
J Exp Med,
203,
1081-1091.
|
 |
|
|
|
|
 |
H.Younus,
S.Jamal,
B.Ahmad,
and
M.Saleemuddin
(2006).
Investigation of conformational changes induced by binding of pancreatic RNase to anti-RNase IgG derived Fab monomer using optical procedures.
|
| |
Biochemistry (Mosc),
71,
218-221.
|
 |
|
|
|
|
 |
P.Haste Andersen,
M.Nielsen,
and
O.Lund
(2006).
Prediction of residues in discontinuous B-cell epitopes using protein 3D structures.
|
| |
Protein Sci,
15,
2558-2567.
|
 |
|
|
|
|
 |
P.M.Oliver,
T.Vass,
J.Kappler,
and
P.Marrack
(2006).
Loss of the proapoptotic protein, Bim, breaks B cell anergy.
|
| |
J Exp Med,
203,
731-741.
|
 |
|
|
|
|
 |
R.J.Duquesnoy
(2006).
A structurally based approach to determine HLA compatibility at the humoral immune level.
|
| |
Hum Immunol,
67,
847-862.
|
 |
|
|
|
|
 |
D.Davies,
and
D.Davies
(2005).
A quiet life with proteins.
|
| |
Annu Rev Biophys Biomol Struct,
34,
1.
|
 |
|
|
|
|
 |
D.Segal,
and
M.Eisenstein
(2005).
The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking.
|
| |
Proteins,
59,
580-591.
|
 |
|
|
|
|
 |
A.Berchanski,
B.Shapira,
and
M.Eisenstein
(2004).
Hydrophobic complementarity in protein-protein docking.
|
| |
Proteins,
56,
130-142.
|
 |
|
|
|
|
 |
A.Cauerhff,
F.A.Goldbaum,
and
B.C.Braden
(2004).
Structural mechanism for affinity maturation of an anti-lysozyme antibody.
|
| |
Proc Natl Acad Sci U S A,
101,
3539-3544.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Liu,
C.Zhang,
H.Zhou,
and
Y.Zhou
(2004).
A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
|
| |
Proteins,
56,
93.
|
 |
|
|
|
|
 |
C.L.Adams,
M.K.Macleod,
E.James Milner-White,
R.Aitken,
P.Garside,
and
D.I.Stott
(2003).
Complete analysis of the B-cell response to a protein antigen, from in vivo germinal centre formation to 3-D modelling of affinity maturation.
|
| |
Immunology,
108,
274-287.
|
 |
|
|
|
|
 |
M.Adachi,
Y.Kurihara,
H.Nojima,
M.Takeda-Shitaka,
K.Kamiya,
and
H.Umeyama
(2003).
Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL-HyHEL-10 complex.
|
| |
Protein Sci,
12,
2125-2131.
|
 |
|
|
|
|
 |
S.Mohan,
N.Sinha,
and
S.J.Smith-Gill
(2003).
Modeling the binding sites of anti-hen egg white lysozyme antibodies HyHEL-8 and HyHEL-26: an insight into the molecular basis of antibody cross-reactivity and specificity.
|
| |
Biophys J,
85,
3221-3236.
|
 |
|
|
|
|
 |
A.Heifetz,
E.Katchalski-Katzir,
and
M.Eisenstein
(2002).
Electrostatics in protein-protein docking.
|
| |
Protein Sci,
11,
571-587.
|
 |
|
|
|
|
 |
B.O'Nuallain,
and
R.Wetzel
(2002).
Conformational Abs recognizing a generic amyloid fibril epitope.
|
| |
Proc Natl Acad Sci U S A,
99,
1485-1490.
|
 |
|
|
|
|
 |
E.B.Plüger,
M.Boes,
C.Alfonso,
C.J.Schröter,
H.Kalbacher,
H.L.Ploegh,
and
C.Driessen
(2002).
Specific role for cathepsin S in the generation of antigenic peptides in vivo.
|
| |
Eur J Immunol,
32,
467-476.
|
 |
|
|
|
|
 |
J.Pons,
J.R.Stratton,
and
J.F.Kirsch
(2002).
How do two unrelated antibodies, HyHEL-10 and F9.13.7, recognize the same epitope of hen egg-white lysozyme?
|
| |
Protein Sci,
11,
2308-2315.
|
 |
|
|
|
|
 |
L.Jiang,
Y.Gao,
F.Mao,
Z.Liu,
and
L.Lai
(2002).
Potential of mean force for protein-protein interaction studies.
|
| |
Proteins,
46,
190-196.
|
 |
|
|
|
|
 |
N.Sinha,
S.Mohan,
C.A.Lipschultz,
and
S.J.Smith-Gill
(2002).
Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity.
|
| |
Biophys J,
83,
2946-2968.
|
 |
|
|
|
|
 |
V.D.Bowman,
E.S.Chase,
A.W.Franz,
P.R.Chipman,
X.Zhang,
K.L.Perry,
T.S.Baker,
and
T.J.Smith
(2002).
An antibody to the putative aphid recognition site on cucumber mosaic virus recognizes pentons but not hexons.
|
| |
J Virol,
76,
12250-12258.
|
 |
|
|
|
|
 |
K.Rosner,
D.B.Winter,
R.E.Tarone,
G.L.Skovgaard,
V.A.Bohr,
and
P.J.Gearhart
(2001).
Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than non-mutated genes.
|
| |
Immunology,
103,
179-187.
|
 |
|
|
|
|
 |
M.E.Bloom,
S.M.Best,
S.F.Hayes,
R.D.Wells,
J.B.Wolfinbarger,
R.McKenna,
and
M.Agbandje-McKenna
(2001).
Identification of aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation.
|
| |
J Virol,
75,
11116-11127.
|
 |
|
|
|
|
 |
M.Kawahara,
A.Natsume,
S.Terada,
K.Kato,
K.Tsumoto,
I.Kumagai,
M.Miki,
W.Mahoney,
H.Ueda,
and
T.Nagamune
(2001).
Replacing factor-dependency with that for lysozyme: affordable culture of IL-6-dependent hybridoma by transfecting artificial cell surface receptor.
|
| |
Biotechnol Bioeng,
74,
416-423.
|
 |
|
|
|
|
 |
Y.Li,
C.A.Lipschultz,
S.Mohan,
and
S.J.Smith-Gill
(2001).
Mutations of an epitope hot-spot residue alter rate limiting steps of antigen-antibody protein-protein associations.
|
| |
Biochemistry,
40,
2011-2022.
|
 |
|
|
|
|
 |
A.Rajpal,
and
J.F.Kirsch
(2000).
Role of the minor energetic determinants of chicken egg white lysozyme (HEWL) to the stability of the HEWL.antibody scFv-10 complex.
|
| |
Proteins,
40,
49-57.
|
 |
|
|
|
|
 |
D.W.Ritchie,
and
G.J.Kemp
(2000).
Protein docking using spherical polar Fourier correlations.
|
| |
Proteins,
39,
178-194.
|
 |
|
|
|
|
 |
L.M.Wright,
A.M.Brzozowski,
R.E.Hubbard,
A.C.Pike,
S.M.Roberts,
R.N.Skovgaard,
I.Svendsen,
H.Vissing,
and
R.P.Bywater
(2000).
Structure of Fab hGR-2 F6, a competitive antagonist of the glucagon receptor.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
573-580.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.L.Pogue,
and
C.C.Goodnow
(2000).
Gene dose-dependent maturation and receptor editing of B cells expressing immunoglobulin (Ig)G1 or IgM/IgG1 tail antigen receptors.
|
| |
J Exp Med,
191,
1031-1044.
|
 |
|
|
|
|
 |
Y.Li,
H.Li,
S.J.Smith-Gill,
and
R.A.Mariuzza
(2000).
Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63(,).
|
| |
Biochemistry,
39,
6296-6309.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Moont,
H.A.Gabb,
and
M.J.Sternberg
(1999).
Use of pair potentials across protein interfaces in screening predicted docked complexes.
|
| |
Proteins,
35,
364-373.
|
 |
|
|
|
|
 |
J.M.van Den Elsen,
D.A.Kuntz,
F.J.Hoedemaeker,
and
D.R.Rose
(1999).
Antibody C219 recognizes an alpha-helical epitope on P-glycoprotein.
|
| |
Proc Natl Acad Sci U S A,
96,
13679-13684.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Pons,
A.Rajpal,
and
J.F.Kirsch
(1999).
Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL-10/lysozyme interaction.
|
| |
Protein Sci,
8,
958-968.
|
 |
|
|
|
|
 |
N.Kessler,
D.Perl-Treves,
L.Addadi,
and
M.Eisenstein
(1999).
Structural and chemical complementarity between antibodies and the crystal surfaces they recognize.
|
| |
Proteins,
34,
383-394.
|
 |
|
|
|
|
 |
Z.C.Fan,
L.Shan,
B.Z.Goldsteen,
L.W.Guddat,
A.Thakur,
N.F.Landolfi,
M.S.Co,
M.Vasquez,
C.Queen,
P.A.Ramsland,
and
A.B.Edmundson
(1999).
Comparison of the three-dimensional structures of a humanized and a chimeric Fab of an anti-gamma-interferon antibody.
|
| |
J Mol Recognit,
12,
19-32.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Rajpal,
M.G.Taylor,
and
J.F.Kirsch
(1998).
Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics.
|
| |
Protein Sci,
7,
1868-1874.
|
 |
|
|
|
|
 |
F.D.Batista,
and
M.S.Neuberger
(1998).
Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate.
|
| |
Immunity,
8,
751-759.
|
 |
|
|
|
|
 |
K.A.Xavier,
and
R.C.Willson
(1998).
Association and dissociation kinetics of anti-hen egg lysozyme monoclonal antibodies HyHEL-5 and HyHEL-10.
|
| |
Biophys J,
74,
2036-2045.
|
 |
|
|
|
|
 |
M.G.Taylor,
A.Rajpal,
and
J.F.Kirsch
(1998).
Kinetic epitope mapping of the chicken lysozyme.HyHEL-10 Fab complex: delineation of docking trajectories.
|
| |
Protein Sci,
7,
1857-1867.
|
 |
|
|
|
|
 |
P.S.Pruett,
and
G.M.Air
(1998).
Critical interactions in binding antibody NC41 to influenza N9 neuraminidase: amino acid contacts on the antibody heavy chain.
|
| |
Biochemistry,
37,
10660-10670.
|
 |
|
|
|
|
 |
T.Keiber-Emmons,
Q.Fang,
W.Cai,
S.M.Friedman,
M.K.Crow,
P.Lotke,
and
W.V.Williams
(1998).
Structural motifs in rheumatoid T-cell receptors.
|
| |
DNA Cell Biol,
17,
133-149.
|
 |
|
|
|
|
 |
T.R.Transue,
E.De Genst,
M.A.Ghahroudi,
L.Wyns,
and
S.Muyldermans
(1998).
Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate.
|
| |
Proteins,
32,
515-522.
|
 |
|
|
|
|
 |
X.Ysern,
H.Li,
and
R.A.Mariuzza
(1998).
Imperfect interfaces.
|
| |
Nat Struct Biol,
5,
412-414.
|
 |
|
|
|
|
 |
I.A.Wilson,
and
K.C.Garcia
(1997).
T-cell receptor structure and TCR complexes.
|
| |
Curr Opin Struct Biol,
7,
839-848.
|
 |
|
|
|
|
 |
J.L.Pellequer,
and
S.W.Chen
(1997).
Does conformational free energy distinguish loop conformations in proteins?
|
| |
Biophys J,
73,
2359-2375.
|
 |
|
|
|
|
 |
J.S.Harrison,
E.Keshavarz-Moore,
P.Dunnill,
M.J.Berry,
A.Fellinger,
and
L.Frenken
(1997).
Factors affecting the fermentative production of a lysozyme-binding antibody fragment in Escherichia coli.
|
| |
Biotechnol Bioeng,
53,
611-622.
|
 |
|
|
|
|
 |
A.Desmyter,
T.R.Transue,
M.A.Ghahroudi,
M.H.Thi,
F.Poortmans,
R.Hamers,
S.Muyldermans,
and
L.Wyns
(1996).
Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme.
|
| |
Nat Struct Biol,
3,
803-811.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.A.Fields,
F.A.Goldbaum,
W.Dall'Acqua,
E.L.Malchiodi,
A.Cauerhff,
F.P.Schwarz,
X.Ysern,
R.J.Poljak,
and
R.A.Mariuzza
(1996).
Hydrogen bonding and solvent structure in an antigen-antibody interface. Crystal structures and thermodynamic characterization of three Fv mutants complexed with lysozyme.
|
| |
Biochemistry,
35,
15494-15503.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Tenette,
F.Ducancel,
and
J.C.Smith
(1996).
Structural model of the anti-snake-toxin antibody, M alpha 2,3.
|
| |
Proteins,
26,
9.
|
 |
|
|
|
|
 |
D.R.Davies,
and
G.H.Cohen
(1996).
Interactions of protein antigens with antibodies.
|
| |
Proc Natl Acad Sci U S A,
93,
7.
|
 |
|
|
|
|
 |
H.Ueda,
K.Tsumoto,
K.Kubota,
E.Suzuki,
T.Nagamune,
H.Nishimura,
P.A.Schueler,
G.Winter,
I.Kumagai,
and
W.C.Mohoney
(1996).
Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region.
|
| |
Nat Biotechnol,
14,
1714-1718.
|
 |
|
|
|
|
 |
J.Cacia,
R.Keck,
L.G.Presta,
and
J.Frenz
(1996).
Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity.
|
| |
Biochemistry,
35,
1897-1903.
|
 |
|
|
|
|
 |
K.K.Koretke,
Z.Luthey-Schulten,
and
P.G.Wolynes
(1996).
Self-consistently optimized statistical mechanical energy functions for sequence structure alignment.
|
| |
Protein Sci,
5,
1043-1059.
|
 |
|
|
|
|
 |
R.R.Joshi
(1996).
A self-organizing cognitive network of antibody repertoire development.
|
| |
J Comput Biol,
3,
529-545.
|
 |
|
|
|
|
 |
T.Olafsen,
O.S.Bruland,
M.R.Zalutsky,
and
I.Sandlie
(1996).
Abundant tyrosine residues in the antigen binding site in anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Application to radiolabeling.
|
| |
Acta Oncol,
35,
297-301.
|
 |
|
|
|
|
 |
A.Chilkoti,
P.H.Tan,
and
P.S.Stayton
(1995).
Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120.
|
| |
Proc Natl Acad Sci U S A,
92,
1754-1758.
|
 |
|
|
|
|
 |
D.Neri,
C.de Lalla,
H.Petrul,
P.Neri,
and
G.Winter
(1995).
Calmodulin as a versatile tag for antibody fragments.
|
| |
Biotechnology (N Y),
13,
373-377.
|
 |
|
|
|
|
 |
J.Janin
(1995).
Elusive affinities.
|
| |
Proteins,
21,
30-39.
|
 |
|
|
|
|
 |
K.P.Murphy,
E.Freire,
and
Y.Paterson
(1995).
Configurational effects in antibody-antigen interactions studied by microcalorimetry.
|
| |
Proteins,
21,
83-90.
|
 |
|
|
|
|
 |
L.C.Kovari,
C.Momany,
and
M.G.Rossmann
(1995).
The use of antibody fragments for crystallization and structure determinations.
|
| |
Structure,
3,
1291-1293.
|
 |
|
|
|
|
 |
M.D.Lairmore,
A.M.DiGeorge,
S.F.Conrad,
A.V.Trevino,
R.B.Lal,
and
P.T.Kaumaya
(1995).
Human T-lymphotropic virus type 1 peptides in chimeric and multivalent constructs with promiscuous T-cell epitopes enhance immunogenicity and overcome genetic restriction.
|
| |
J Virol,
69,
6077-6089.
|
 |
|
|
|
|
 |
M.Viswanathan,
J.M.Anchin,
P.R.Droupadi,
C.Mandal,
D.S.Linthicum,
and
S.Subramaniam
(1995).
Structural predictions of the binding site architecture for monoclonal antibody NC6.8 using computer-aided molecular modeling, ligand binding, and spectroscopy.
|
| |
Biophys J,
69,
741-753.
|
 |
|
|
|
|
 |
S.V.Kashmiri,
L.Shu,
E.A.Padlan,
D.E.Milenic,
J.Schlom,
and
P.H.Hand
(1995).
Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49.
|
| |
Hybridoma,
14,
461-473.
|
 |
|
|
|
|
 |
W.Schiweck,
and
A.Skerra
(1995).
Fermenter production of an artificial fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling.
|
| |
Proteins,
23,
561-565.
|
 |
|
|
|
|
 |
A.R.Friedman,
V.A.Roberts,
and
J.A.Tainer
(1994).
Predicting molecular interactions and inducible complementarity: fragment docking of Fab-peptide complexes.
|
| |
Proteins,
20,
15-24.
|
 |
|
|
|
|
 |
F.de Haas,
F.G.Perton,
J.F.van Breemen,
J.H.Dijkema,
J.J.Beintema,
and
E.F.van Bruggen
(1994).
Identification of two antibody-interaction sites on the surface of Panulirus interruptus hemocyanin.
|
| |
Eur J Biochem,
222,
155-161.
|
 |
|
|
|
|
 |
J.Cherfils,
T.Bizebard,
M.Knossow,
and
J.Janin
(1994).
Rigid-body docking with mutant constraints of influenza hemagglutinin with antibody HC19.
|
| |
Proteins,
18,
8.
|
 |
|
|
|
|
 |
J.Lescar,
H.Souchon,
and
P.M.Alzari
(1994).
Crystal structures of pheasant and guinea fowl egg-white lysozymes.
|
| |
Protein Sci,
3,
788-798.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Herron,
A.H.Terry,
S.Johnston,
X.M.He,
L.W.Guddat,
E.W.Voss,
and
A.B.Edmundson
(1994).
High resolution structures of the 4-4-20 Fab-fluorescein complex in two solvent systems: effects of solvent on structure and antigen-binding affinity.
|
| |
Biophys J,
67,
2167-2183.
|
 |
|
|
|
|
 |
L.Jin,
F.E.Cohen,
and
J.A.Wells
(1994).
Structure from function: screening structural models with functional data.
|
| |
Proc Natl Acad Sci U S A,
91,
113-117.
|
 |
|
|
|
|
 |
M.Orlandini,
A.Santucci,
A.Tramontano,
P.Neri,
and
S.Oliviero
(1994).
Cloning, characterization, and modeling of a monoclonal anti-human transferrin antibody that competes with the transferrin receptor.
|
| |
Protein Sci,
3,
1476-1484.
|
 |
|
|
|
|
 |
M.P.Cooke,
A.W.Heath,
K.M.Shokat,
Y.Zeng,
F.D.Finkelman,
P.S.Linsley,
M.Howard,
and
C.C.Goodnow
(1994).
Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells.
|
| |
J Exp Med,
179,
425-438.
|
 |
|
|
|
|
 |
N.Ban,
C.Escobar,
R.Garcia,
K.Hasel,
J.Day,
A.Greenwood,
and
A.McPherson
(1994).
Crystal structure of an idiotype-anti-idiotype Fab complex.
|
| |
Proc Natl Acad Sci U S A,
91,
1604-1608.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.T.Wu
(1994).
From esoteric theory to therapeutic antibodies.
|
| |
Appl Biochem Biotechnol,
47,
107.
|
 |
|
|
|
|
 |
Y.Ichiyoshi,
and
P.Casali
(1994).
Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments.
|
| |
J Exp Med,
180,
885-895.
|
 |
|
|
|
|
 |
A.B.Edmundson,
D.L.Harris,
Z.C.Fan,
L.W.Guddat,
B.T.Schley,
B.L.Hanson,
G.Tribbick,
and
H.M.Geysen
(1993).
Principles and pitfalls in designing site-directed peptide ligands.
|
| |
Proteins,
16,
246-267.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Simpson,
J.C.Chow,
J.Baker,
N.Avdalovic,
S.Yuan,
D.Au,
M.S.Co,
M.Vasquez,
W.J.Britt,
and
K.L.Coelingh
(1993).
Neutralizing monoclonal antibodies that distinguish three antigenic sites on human cytomegalovirus glycoprotein H have conformationally distinct binding sites.
|
| |
J Virol,
67,
489-496.
|
 |
|
|
|
|
 |
J.F.Schillbach,
R.I.Near,
R.E.Bruccoleri,
E.Haber,
P.D.Jeffrey,
J.Novotny,
S.Sheriff,
and
M.N.Margolies
(1993).
Modulation of antibody affinity by a non-contact residue.
|
| |
Protein Sci,
2,
206-214.
|
 |
|
|
|
|
 |
J.Lescar,
M.M.Riottot,
H.Souchon,
V.Chitarra,
G.A.Bentley,
J.Navaza,
P.M.Alzari,
and
R.J.Poljak
(1993).
Crystallization, preliminary X-ray diffraction study, and crystal packing of a complex between anti-hen lysozyme antibody F9.13.7 and guinea-fowl lysozyme.
|
| |
Proteins,
15,
209-212.
|
 |
|
|
|
|
 |
J.M.Nuss,
P.B.Whitaker,
and
G.M.Air
(1993).
Identification of critical contact residues in the NC41 epitope of a subtype N9 influenza virus neuraminidase.
|
| |
Proteins,
15,
121-132.
|
 |
|
|
|
|
 |
J.White,
A.Pullen,
K.Choi,
P.Marrack,
and
J.W.Kappler
(1993).
Antigen recognition properties of mutant V beta 3+ T cell receptors are consistent with an immunoglobulin-like structure for the receptor.
|
| |
J Exp Med,
177,
119-125.
|
 |
|
|
|
|
 |
J.Xiang,
E.Liu,
L.T.Delbaere,
Z.Chen,
X.Luo,
Y.Qi,
and
C.Rathgeber
(1993).
The tyrosine residue at position 97 in the VH CDR3 region of a mouse/human chimeric anti-colorectal carcinoma antibody contributes hydrogen bonding to the TAG72 antigen.
|
| |
Cancer Biother,
8,
253-262.
|
 |
|
|
|
|
 |
J.Xiang,
Z.Chen,
L.T.Delbaere,
and
E.Liu
(1993).
Differences in antigen-binding affinity caused by a single amino acid substitution in the variable region of the heavy chain.
|
| |
Immunol Cell Biol,
71,
239-247.
|
 |
|
|
|
|
 |
L.C.Gruen,
A.A.Kortt,
and
E.Nice
(1993).
Determination of relative binding affinity of influenza virus N9 sialidases with the Fab fragment of monoclonal antibody NC41 using biosensor technology.
|
| |
Eur J Biochem,
217,
319-325.
|
 |
|
|
|
|
 |
L.N.Kam-Morgan,
S.J.Smith-Gill,
M.G.Taylor,
L.Zhang,
A.C.Wilson,
and
J.F.Kirsch
(1993).
High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis.
|
| |
Proc Natl Acad Sci U S A,
90,
3958-3962.
|
 |
|
|
|
|
 |
M.Pellegrini,
and
S.Doniach
(1993).
Computer simulation of antibody binding specificity.
|
| |
Proteins,
15,
436-444.
|
 |
|
|
|
|
 |
O.Vix,
B.Rees,
J.C.Thierry,
and
D.Altschuh
(1993).
Crystallographic analysis of the interaction between cyclosporin A and the Fab fragment of a monoclonal antibody.
|
| |
Proteins,
15,
339-348.
|
 |
|
|
|
|
 |
P.T.Kaumaya,
S.Kobs-Conrad,
Y.H.Seo,
H.Lee,
A.M.VanBuskirk,
N.Feng,
J.F.Sheridan,
and
V.Stevens
(1993).
Peptide vaccines incorporating a 'promiscuous' T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity.
|
| |
J Mol Recognit,
6,
81-94.
|
 |
|
|
|
|
 |
R.L.Malby,
J.B.Caldwell,
L.C.Gruen,
V.R.Harley,
N.Ivancic,
A.A.Kortt,
G.G.Lilley,
B.E.Power,
R.G.Webster,
and
P.M.Colman
(1993).
Recombinant antineuraminidase single chain antibody: expression, characterization, and crystallization in complex with antigen.
|
| |
Proteins,
16,
57-63.
|
 |
|
|
|
|
 |
S.Vuilleumier,
and
M.Mutter
(1993).
Synthetic peptide and template-assembled synthetic protein models of the hen egg white lysozyme 87-97 helix: importance of a protein-like framework for conformational stability in a short peptide sequence.
|
| |
Biopolymers,
33,
389-400.
|
 |
|
|
|
|
 |
T.T.Wu,
G.Johnson,
and
E.A.Kabat
(1993).
Length distribution of CDRH3 in antibodies.
|
| |
Proteins,
16,
1-7.
|
 |
|
|
|
|
 |
D.Bassolino-Klimas,
R.E.Bruccoleri,
and
S.Subramaniam
(1992).
Modeling the antigen combining site of an anti-dinitrophenyl antibody, ANO2.
|
| |
Protein Sci,
1,
1465-1476.
|
 |
|
|
|
|
 |
D.E.Symer,
R.Z.Dintzis,
D.J.Diamond,
and
H.M.Dintzis
(1992).
Inhibition or activation of human T cell receptor transfectants is controlled by defined, soluble antigen arrays.
|
| |
J Exp Med,
176,
1421-1430.
|
 |
|
|
|
|
 |
D.Kerjaschki,
R.Ullrich,
K.Diem,
S.Pietromonaco,
R.A.Orlando,
and
M.G.Farquhar
(1992).
Identification of a pathogenic epitope involved in initiation of Heymann nephritis.
|
| |
Proc Natl Acad Sci U S A,
89,
11179-11183.
|
 |
|
|
|
|
 |
I.Randen,
K.M.Thompson,
V.Pascual,
K.Victor,
D.Beale,
J.Coadwell,
O.Førre,
J.D.Capra,
and
J.B.Natvig
(1992).
Rheumatoid factor V genes from patients with rheumatoid arthritis are diverse and show evidence of an antigen-driven response.
|
| |
Immunol Rev,
128,
49-71.
|
 |
|
|
|
|
 |
J.Beattie,
H.A.Fawcett,
and
D.J.Flint
(1992).
The use of multiple-pin peptide synthesis in an analysis of the continuous epitopes recognised by various anti-(recombinant bovine growth hormone) sera. Comparison with predicted regions of immunogenicity and location within the three-dimensional structure of the molecule.
|
| |
Eur J Biochem,
210,
59-66.
|
 |
|
|
|
|
 |
J.Beattie
(1992).
Investigation of the solid- and solution-phase binding reactivities of continuous epitopes recognized by polyclonal guinea-pig anti-recombinant bovine growth hormone antisera.
|
| |
J Mol Recognit,
5,
99.
|
 |
|
|
|
|
 |
J.P.Langedijk,
N.K.Back,
E.Kinney-Thomas,
C.Bruck,
M.Francotte,
J.Goudsmit,
and
R.H.Meloen
(1992).
Comparison and fine mapping of both high and low neutralizing monoclonal antibodies against the principal neutralization domain of HIV-1.
|
| |
Arch Virol,
126,
129-146.
|
 |
|
|
|
|
 |
J.W.Thomas
(1992).
Anti-insulin and regulatory anti-idiotypic antibodies use the same germ-line VHIX gene.
|
| |
Eur J Immunol,
22,
2445-2448.
|
 |
|
|
|
|
 |
L.J.Nell,
J.A.McCammon,
and
S.Subramaniam
(1992).
Anti-insulin antibody structure and conformation. I. Molecular modeling and mechanics of an insulin antibody.
|
| |
Biopolymers,
32,
11-21.
|
 |
|
|
|
|
 |
M.D.Walkinshaw
(1992).
Protein targets for structure-based drug design.
|
| |
Med Res Rev,
12,
317-372.
|
 |
|
|
|
|
 |
M.T.Mas,
K.C.Smith,
D.L.Yarmush,
K.Aisaka,
and
R.M.Fine
(1992).
Modeling the anti-CEA antibody combining site by homology and conformational search.
|
| |
Proteins,
14,
483-498.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.M.Kirkham,
F.Mortari,
J.A.Newton,
and
H.W.Schroeder
(1992).
Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding.
|
| |
EMBO J,
11,
603-609.
|
 |
|
|
|
|
 |
R.Brink,
C.C.Goodnow,
J.Crosbie,
E.Adams,
J.Eris,
D.Y.Mason,
S.B.Hartley,
and
A.Basten
(1992).
Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen.
|
| |
J Exp Med,
176,
991.
|
 |
|
|
|
|
 |
W.Ito,
N.Sakato,
H.Fujio,
K.Yutani,
Y.Arata,
and
Y.Kurosawa
(1992).
The His-probe method: effects of histidine residues introduced into the complementarity-determining regions of antibodies on antigen-antibody interactions at different pH values.
|
| |
FEBS Lett,
309,
85-88.
|
 |
|
|
|
|
 |
X.M.He,
F.Rüker,
E.Casale,
and
D.C.Carter
(1992).
Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1.
|
| |
Proc Natl Acad Sci U S A,
89,
7154-7158.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.G.Stiles,
and
J.L.Middlebrook
(1991).
Epitope mapping of snake venom phospholipases A2 with pseudexin monoclonal antibodies.
|
| |
J Protein Chem,
10,
193-204.
|
 |
|
|
|
|
 |
D.C.Benjamin
(1991).
Molecular approaches to the study of B cell epitopes.
|
| |
Int Rev Immunol,
7,
149-164.
|
 |
|
|
|
|
 |
J.A.Tainer,
C.D.Deal,
H.M.Geysen,
V.A.Roberts,
and
E.D.Getzoff
(1991).
Defining antibody-antigen recognition: towards engineered antibodies and epitopes.
|
| |
Int Rev Immunol,
7,
165-188.
|
 |
|
|
|
|
 |
J.C.Cheetham,
D.P.Raleigh,
R.E.Griest,
C.Redfield,
C.M.Dobson,
and
A.R.Rees
(1991).
Antigen mobility in the combining site of an anti-peptide antibody.
|
| |
Proc Natl Acad Sci U S A,
88,
7968-7972.
|
 |
|
|
|
|
 |
J.Cherfils,
S.Duquerroy,
and
J.Janin
(1991).
Protein-protein recognition analyzed by docking simulation.
|
| |
Proteins,
11,
271-280.
|
 |
|
|
|
|
 |
J.M.Anchin,
S.Subramaniam,
and
D.S.Linthicum
(1991).
Binding of the neuroleptic drug haloperidol to a monoclonal antibody: refinement of the binding site molecular model using canonical structures.
|
| |
J Mol Recognit,
4,
7.
|
 |
|
|
|
|
 |
J.N.Herron,
X.M.He,
D.W.Ballard,
P.R.Blier,
P.E.Pace,
A.L.Bothwell,
E.W.Voss,
and
A.B.Edmundson
(1991).
An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex.
|
| |
Proteins,
11,
159-175.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.E.Denton,
and
H.A.Scheraga
(1991).
Spectroscopic, immunochemical, and thermodynamic properties of carboxymethyl(Cys6, Cys127)-hen egg white lysozyme.
|
| |
J Protein Chem,
10,
213-232.
|
 |
|
|
|
|
 |
S.E.Stark,
and
A.J.Caton
(1991).
Antibodies that are specific for a single amino acid interchange in a protein epitope use structurally distinct variable regions.
|
| |
J Exp Med,
174,
613-624.
|
 |
|
|
|
|
 |
Y.Paterson
(1991).
The structural basis of protein antigenicity.
|
| |
Int Rev Immunol,
7,
121-128.
|
 |
|
|
|
|
 |
A.J.Prongay,
T.J.Smith,
M.G.Rossmann,
L.S.Ehrlich,
C.A.Carter,
and
J.McClure
(1990).
Preparation and crystallization of a human immunodeficiency virus p24-Fab complex.
|
| |
Proc Natl Acad Sci U S A,
87,
9980-9984.
|
 |
|
|
|
|
 |
E.A.Padlan
(1990).
On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands.
|
| |
Proteins,
7,
112-124.
|
 |
|
|
|
|
 |
G.M.Air,
W.G.Laver,
and
R.G.Webster
(1990).
Mechanism of antigenic variation in an individual epitope on influenza virus N9 neuraminidase.
|
| |
J Virol,
64,
5797-5803.
|
 |
|
|
|
|
 |
P.M.Alzari,
S.Spinelli,
R.A.Mariuzza,
G.Boulot,
R.J.Poljak,
J.M.Jarvis,
and
C.Milstein
(1990).
Three-dimensional structure determination of an anti-2-phenyloxazolone antibody: the role of somatic mutation and heavy/light chain pairing in the maturation of an immune response.
|
| |
EMBO J,
9,
3807-3814.
|
 |
|
|
|
|
 |
W.E.Paul
(1990).
B-cell activation and the one B cell/one antibody paradigm.
|
| |
Immunol Rev,
115,
197.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|